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Abstract

Certification trails are a recently introduced and promising

approach to fault-detection and fault-tolerance [1, 2, 3, 4]. In

this paper, we report on a comprehensive attempt to assess ex-

perimentaUy the performance and overall value of the method.
The method is applied to algorithms for the following problems:

huffman tree, shortest path, minimum spanning tree, sorting,

and convex hull. Our results reveal many cases in which an

approach using certification-trails allows for significantly faster

overall program execution time than a basic time redundancy-

approach.
We also examine algorithms for the answer-validation prob-

lem for abstract data types. This kind of problem was originally

proposed in [3] and provides a basis for applying the certification-
trail method to wide classes of algorithms. We implemented and

analyzed answer-validation solutions for two types of priority

queues. In both cases, the algorithm which performs answer-
validation is substantially faster than the original algorithm for

computing the answers.
Next we present a probabihstic model and analysis which en-

ables comparison between the certification-trail method and the

time-redundancy approach. The analysis reveals some substan-

tial and sometimes surprising advantages for the certification-

trail method.
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Finally we discuss the work our group has performed on the

design and implementation of fault injection testbeds for experi-

mental analysis of the certification trail technique This work em-

ploys two distinct methodologies: software fault injection (mod-
ification of instruction, data, and stack segments of programs on

a Sun Sparcstation ELC and on an IBM 386 PC) and hardware

fault injection (control, address, and data fines of an Motorola

MC68000-based target system pulsed at logical zero/one values).

Our results indicate the viability of the certification trail tech-

nique. We also believe the tools we have developed provide a

solid base for additional exploration.

Keywords: Software fault tolerance, certification trails, error

monitoring, design diversity, data structures.

1 Introduction

Certification trails are a recently introduced and promising approach to

fault-detection and fault-tolerance [1, 3]. In this paper, we report on a com-

prehensive attempt to assess experimentally the performance and overall
wlue of the method. We have implemented several fundamental algorithms

together with versions of the algorithms which generate and utilize certifica-

tion trails. Specifically, algorithms for the following problems are analyzed:

huffman tree, shortest path, minimum spanning tree, sorting, and convex

hull. Our results reveal many cases in which an approach using certification

trails allows for significantly faster overall program execution time than a

basic time redundancy approach.

We also examine algorithms for the answer-validation problem for ab-

stract data types. This kind of problem was originally proposed in [3] and

provides a basis for applying the certification-trail method to wide classes of

algorithms. For this paper we implemented and analyzed answer-vafidation
solutions for two abstract data types. The first solution is for a simplified

priority queue which allows insert, min and deletemin operations, and the

second solution is for a priority queue which allows insert, rain, delete and

deletemin operations. In both cases, the algorithm which performs answer-
validation is substantial faster than the original algorithm for computing the

answers.
This paper next presents a simple probabifistic model and analysis which

enables comparison between the certification-trail method and the time-



u

i W

m

u

redundancy approach. The analysis shows that when the certification-trail
method has a smaller execution time than the time-redundancy approach

it yields strictly superior performance. This means the method has both

a a smaller probability of error and a smaller probability of undetected

error. Surprisingly, the analysis also reveals the intriguing result that the

certification-trail method often can display superior performance even when

the method has the same execution time or a longer execution time than the

time-redundancy approach. This superior behavior stems from the typical

assymetry of the execution times of the first and second executions in the
certification-trail method.

The paper next discusses the work our group has performed on the design

and implementation of fault injection testbeds. This work employs two

distinct methodologies: software fault injection and hardware fault injection.

The software fault injection tool is similar to an interactive debugger but

more accurately can be considered an interactive bugger. It allows programs
to be halted and faults to be injected by direct modification of the stack,

data and instruction segments of a program. Output can then be captured

and characterized.

The hardware fault injector is based on injecting faults into an operating

microprocessor. The injection is performed by explicitly setting one or more

pins of the microprocessor to logical zero and/or logical one values. The

timing and duration of the pin setting is under control of a supervisory

processor. The testbed also includes a multi-processor system. This system

consists of three processors which are connected to one another pairwise by

shared banks of dual ported memory. We plan to use this system to conduct

evaluation of systems which utilize concurrent execution of algorithms using

the certification-trail method.

w

2 Introduction to Certification Trails

To explain the essence of the certification-trail technique for software fault

tolerance, we will first discuss a simpler fault-tolerant software method. In

this method the specification of a problem is given and an algorithm to solve

it is constructed. This algorithm is executed on an input and the output is

stored. Next, the same algorithm is executed again on the same input and

the output is compared to the earlier output. If the outputs differ then an
error is indicated, otherwise the output is accepted as correct. This software

fault tolerance method requires additional time, so-called time redundancy
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[32, 52]; however, it requires no additional software. It is particularly valu-

able for detecting errors caused by transient fault phenomena. If such faults

cause an error during only one of the executions then either the error will be

detected or the output will be correct. The second possibility, ofundetected

faults, occurs when the output of the execution is unaffected by the faults.

A variation of the above method uses two separate algorithms, one for

each execution, which have been written independently based on the problem

specification. This technique, ca]led N-version programming [16, 12] (in

this case N=2), allows for the detection of errors caused by some faults
in the software in addition to those cause by transient hardware faults and

utilizes both time and software redundancy. Errors caused by software faults

are detected whenever the independently written programs do not generate
coincident errors.

The certification-trail technique is designed to obtain similar types of

error-detection capabilities but expend fewer resources. The central idea,

as illustrated in Figure 1, is to modify the first algorithm so that it leaves

behind a trail of data which we call a certification trail. This data is chosen

so that it can allow the the second algorithm to execute more quickly and/or

have a simpler structure than the first algorithm. As above, the outputs of

the two executions are compared and are considered correct only if they

agree. Note, however, we must be careful in defining this method or else

its error detection capability might be reduced by the introduction of data

dependency between the two algorithm executions. For example, suppose

the first algorithm execution contains an error which causes an incorrect

output and an incorrect trail of data to be generated. Further suppose

that no error occurs during the execution of the second algorithm. It still

appears possible that the execution of the second algorithm might use the

incorrect trail to generate an incorrect output which matches the incorrect

output given by the execution of the first algorithm. Intuitively, the second
execution would be "fooled" by the data left behind by the first execution.

The definitions we give below exclude this possibility. They demand that

the second execution either generate a correct answer or signal that an error
has been detected in the data trail.

3 Formal Definition of a Certification Trail

In this section we will give a formal definition of a certification trail and

discuss some aspects of its realizations and uses.

r .
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Figure 1: Certification trail method.

Definition 3.1 A problem P is formalized as a relation, i.e., a set of ordered

pairs. Let D be the domain (that is, the set of inputs) of the relation P and

let S be the range (that is, the set of solutions) for the problem. We say an

algorithm A solves a problem P iff for all d E D when d is input to A then

an s E S is output such that (d, s) E P.

Definition 3.2 Let P : D --, S be a problem. A solution to this problem

using a certification trail consists of two functions F1 and F2 with the fol-

lowing domains and ranges F1 : D ---, S x T and F2 : D x T ---, S U {error}.

T is the set of certification trails. The functions must satisfy the following

two properties:

(1) for all d E D there exists s E S and there exists t E T such that

Fl(d) = (s,t) and F2(d,t) = s and (d,s) E P

(2) for all d E D and for all t E T

either (F_(d, t) = s and (d, s) E P) or F2(d, t) = error.

We also require that FI and F2 be implemented so that they map ele-

ments which are not in their respective domains to the error symbol. The

definitions above assure that the error-detection capability of the certification-

trail approach is similar to that obtained with the simple time-redundancy

approach discussed earlier. (That is, if transient hardware faults occur dur-

ing only one of the executions then either an error will be detected or the

output will be correct.) It should be further noted, however, the examples
to be considered will indicate that this new approach can also save overall

execution time.
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Throughout this section we have assumed that our method is imple-

mented with software, however, it is clearly possible to implement the method
with assistance from dedicated hardware. The degree of diversity or inde-

pendence achieved when using certification trails depends on how they are
used. A fuller discussion of this and of the relationship between certification

trails and other approaches to software fault tolerance is contained in the

expanded version of [1].

4 Generalized Priority Queue

Before we present our example algorithms which use certification trails we
must discuss the notion of an abstract data type. An abstract data type has

a well defined data object or set of data objects, and an abstract data type

has a carefully defined finite collection of operations that can be performed

on its data object(s). Each operation takes a finite number of arguments

(possibly zero), and some but not all operations return answers.
Some of the algorithms presented in the next section use the priority

queue abstract data type. In addition, later in this paper the answer-

validation problem for two variants of the priority queue are presented.

Therefore, we now describe the priority queue. The data consists of a set

of ordered pairs. The first element in these ordered pairs is referred to as
the item number and the second element is called the key value. Ordered

pairs may be added and removed from the set, however, at all times the item

numbers of distinct ordered pairs must be distinct. It is possible, though,

for multiple ordered pairs to have the same key value. In this paper the item

numbers are integers between 1 and n, inclusive. Our default convention is

that i is an item number, k is a key value and h is a set of ordered pairs.

A total ordering on the pairs of a set can be defined lexicographically as

follows: (i, k) < (i', k') iff k < k' or (k = k' and i < i'). The abstract data

types we will consider support a subset of the following operations.

member(i) returns a boolean value of true if the set contains an ordered

pair with item number i, otherwise returns false.

insert(i, k) adds the ordered pair (i, k) to the set. We require that no other

pair with item number i be in the set.

delete(i) deletes the unique ordered pair with item number i from the set.

We require that a pair with item number i be in the set initially.
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changekey(i, k) is executed only when there is an ordered pair with item
number i in the set. This pair is replaced by (i, k).

deletemin (or deletemax) returns the ordered pair which is smallest (or

largest) according to the total order defined above and deletes this

pair. If the set is empty then the token "empty" is returned.

min (or max) returns the ordered pair which is smallest (or largest) accord-

ing to the total order defined above. If the set is empty then the token

"empty" is returned.

predecessor(i) returns the item number of the ordered pair which immedi-

ately precedes the pair with item number i in the total order. If there

is no predecessor then the token "smallest" is returned. We require

that a pair with item number i be in the set initially.

If an operation violates one of the requirements described above then it is

considered to be ill-formed. Also, if an operation has the wrong number or

type of arguments it is considered to be ill-formed.

Many different types and combinations of data structures can be used

to support different subsets of these operations efficiently.

5 Examples of the Certification Trail Technique

with Timing Data

In this section we evaluate the use of certification trails for five well-known

and significant problems in computer science: the convex hull problem, the

minimum spanning tree problem, the shortest path problem, the Huffman

tree problem, and the sorting problem. We have implemented algorithms

for these problems together with other algorithms which generate and use

certification trails.

We provide a full description of the algorithm for the convex hull problem

which generates a certification trail and a full description of the algorithm
which uses that trail. This material has not appeared in our previous publi-

cations [1, 3]. Because of space considerations the discussion of three of the

other algorithms is abbreviated, but references to previous publications or

technical reports which describe the algorithms more fully are given. The

treatment of the sort algorithm is brief but is detailed enough for the inter-

ested reader to implement the certification-trail method.
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The algorithms we have choosen to implement are not always the al-

gorithms which have the smallest asymptotic time complexity. Often the

asymptotically fastest algorithms have large constants of proportionality
which make them slower on the data sizes we examined. We modified and

used some programs from major software distributions such as quicker-sort

from a Berkeley Unix distribution. Other algorithms were based on text-
book discussions. It should be stressed here that this research is exploratory

and we hope to further increase our corpus of algorithm and data-structure

implementations.

5.1 Systems used for timing data

We have collected timing data for the algorithms considered using a Sun

workstation, an IBM 386 PC and a Motorola 68000-based system.
The SUN machine utilized was a SPARCstation ELC with 16MB of

RAM. The system was run as a standalone machine in single user mode

during the timing experiments. Timing data was obtained through the

getrusage() system call; the user times are reported in the data.
Some of the algorithms were also run on an MSDOS machine: a North-

gate 386/33 with 8MB of RAM. The programs were compiled using DJGPP,

DJ Delorie's port of the GNU GCC compiler to MSDOS. This compiler uses

a DOS extender to allow programs to run in protected mode; thus nearly all

of the 8MB in the machine was available, thereby allowing data sets com-

parable in size to those used on the Sun. The programs required no change

to run under MSDOS, though the data generators required minor modifi-

cation because the drand48() family of random number generators was not
available.

Finally some of the algorithms were also run Motorola M68000-based

target system. In addition to the MC68000 microprocessor which served as

the cpu, the system was also was comprised of 512K bytes of RAM, 512

bytes of ROM, and numerous I/O modules to support serial and parallel
communication. A timer module is also included in the system which uses

the 4Mhz clock as a reference so as to provide execution time data for

experiments. This system is discussed in Section 10 relative to fault injection

experiments.
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5.2 Explanation of timing data table entries

Much of the data presented in the timing table is essentially self-explanatory

relative to the certication trail technique and algorithms considered. How-

ever, a brief discussion of the table entries is appropriate.

The Basic Algorithm timing data refers to the execution time of the

algorithm in producing the output without the generation of the certification

trail. All timing data is listed in seconds.

The Generate Certif. timing data refers to the execution time of the al-

gorithm in producing the output with the additional overhead of generating

the certification trail.

The Use Certif. timing data refers to the execution time of the algorithm

in producing the output while using the certification trail.

The Compare timing data refers to the time necessary to compare the

outputs from both two Basic Algorithm runs or from a Generate Certifi-

cation Trial run and a Use Certification Trail run. (Obviously, the value

of the comparison would be the same in each case.) For the some of the

experiments, the data was too small to calculate and is therefore listed as

0.00. In other experiments, the comparison was included in the algorithm

execution timing data and therefore is not separately listed.

The Total Basic timing data is twice the Basic Algorithm timing data

plus the Comparison time (when available) so as to evaluate the classical

time-redundancy approach.

The Total Certif. timing data is the sum of the Generate Certif. timing

data and the Use Certif. data and Comparison data (when available) so as

to evaluate the certification trail approach.

The _ Savings data is percentage of the execution time savings which is

gained by using the certification trail method as compared to the classical

time redundancy method.

For the Huffman tree data, the input size for the Huffman tree program

is the number of nodes. Each node is given a frequency, chosen uniformly

from the integers {1, 2, ..., n}. n was selected to be the number of nodes,

but in fact it's value does not affect the running time of the algorithm. In

order for the algorithm to execute correctly, the sum of the frequencies must
not cause an arithmetic overflow. The certification trail method will detect

this.

For the minimum spanning tree and shortest path tables, there are two

numbers associated with the input size, the first is the number of vertices

in the graph, the second the number of edges. A graph with the required

=
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edges is selected uniformly from the set of all such graphs, then tested for

connectednessl The algorithms will function regardless of connectedness,

but allowing graphs that are not connected would introduce undesirable

variation in the timing data.

For the convex hull tables, the input size is the number of points in the

data set. The points are chosen uniformly from the set of points with integer

coordinates between 0 and 30,000.

For the sorting tables, sorting was timed in two ways. The first set of

results were obtained by sorting integers. To generate a trail, an integer tag

is added to each input integer and an array of these pairs passed to the sort

function. After sorting, the "data" integers are placed in an array, and the

"tag" integers are placed on the certification trail. Thus, the sort call looks
the same as a normal sort function. The time to massage the data in this

manner is included in the cost of the call. This method resulted in only

a small speedup, because of the overhead involved in massaging the data,

and because the sort routine must swap pairs of integers instead of single

integers. The integers were chosen uniformly over the range 0 to 1,000,000.

The second method was to sort an array of pointers to structures. In this

case it was assumed that the structure contained a field that would serve

as the tag. The sort program needed only to fill in this field, and not copy
the structures to a second array. This method results in dramatic speedups.

Integer keys were used, though a more complex key will work as well (in

fact, a more complex key is very likely to increase the speedup achieved).

For the priority queue and generalized priority queue tables, the input
size n is the number of commands executed. The item numbers range from

1 to n (ie. there are as many item numbers as there are commands). The

commands are not chosen with equal probability, but rather the first n/2

are weighted toward insert operations while the second half are weighted

toward the other operations, the weightings remaining the same for all runs.

This weighting is necessary in order to force a large queue.

The timing data displayed in the tables should be considered not only
relative to the overall efficiencies of the certification trail method relative

to classical time redundancy but also relative to the probabilistic analysis

given in Section 9 in which we show that when the certification-trail method
has a smaller execution time than the time-redundancy approach it yields

strictly superior performance. This means the certification trail method has

both a a smaller probability of error and a smaller probability of undetected

error.
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5.3 Convex Hull Example

The convex hull problem is a fundamental one ih computational geometry.
Our certification trail solution is based on a solution due to Graham [24]

which is called Graham's Scan. For basic definitions in computational ge-

ometry see the text of Preparata and Shamos[46]. For simplicity in the

discussion which follows we will assume the points are in so called general

position, e.g., no three points are colinear. It is not hard to remove this
restriction.

Definition 5.1 The convex hull of a set of points, 5', in the Euclidean

plane is defined as the smallest convex polygon enclosing all the points.

This polygon is unique and its vertices are a subset of the points in 5". It is

specified by a counterclockwise sequence of its vertices.

Figure 2(c) shows a convex hull for the points indicated by black dots.

The algorithm given below constructs the convex hull incrementally in a

counterclockwise fashion. Sometimes it is necessary for the algorithm to

"backup" the construction by throwing some vertices out and then contin-

uing. The first step of the algorithm selects an "extreme" point and calls

it Pl. The next two steps sort the remaining points in a way which is de-

picted in Figure 2(a). It is not hard to show that after these three steps the

points when taken in order, Pl, P2,. •., P,_, form a simple polygon; although

this polygon may not be convex. It is possible to think of the algorithm

as removing points from this simple polygon until it becomes convex. The

main FOR loop iteration adds vertices to the polygon under construction

and the inner WHILE loop removes vertices from the construction. A point

is removed when the angle test performed at line 6 reveals that it is not on

the convex hull because it falls within the triangle defined by three other

points. A "snapshot" of the algorithm given in Figure 2(b) shows that q5

is removed from the hull. The angle formed by q4,qs,P6 is less than 180

degrees. This means, qs lies within the triangle formed by q4,Pl,P_. (Note,

ql = Pl-) In general, when the angle test is performed if the angle formed by

qm-1, qm, pk is less than 180 degrees then q,_ lies within the triangle formed

by q,_-l,Pl,Pk. Below it will be revealed that this is the main fact that
our certification trail relies on. When the main FOR loop is complete the

convex hull has been constructed.

Algorithm CONVEXHULL(5')

Input: Set of points, 5', in R 2

11
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Figure 2: Convex hull example.

Output: Counterclockwise sequence of points in R 2 which define convex hull of S

1 Let Pl be the point with the largest z coordinate (and smallest y to break ties)

2 For each point p (except Pl) calculate the slope of the line through Pl and p

3 Sort the points (except pl) from smallest slope to largest. Call them P2,..., P,_

4 ql :: Pl; q2 := P2; q3 := P3; m = 3
5 FORk=4tonDO

6 WHILE the angle formed by q,_-l,q,,,,pk is > 180 degrees DO m := m - 1 END

7 m:=m+l

8 qm := Pk

9 END FOR

10FOR i = 1 to m DO, OUTPUT(q,) END FOR

END CONVEXHULL

First execution: In this execution the code CONVEXHULL is used.

The certification trial is generated by adding an output statement within the

WHILE loop. Specifically, if an angle of less than 180 degrees is found in the

WHILE loop test then the four tuple consisting of q,n, q,_-l, Pl, Pk is output
to the certification trail. The table below shows the four tuples of points

that would be output by the algorithm when run on the example in Figure

2. The points in the table are given the same names as in Figure 2(a). The

final convex hull points qz,..., q,,, are also output to the certification trail.

Strictly speaking the trail output does not consist of the actual points in R 2.

Instead, it consists of indices to the original input data. This means if the

original data consists of ss, s2,..., s,_ then rather than ouput the element in

R 2 corresponding to si the number i is output. It is not hard to code the

program so that this is done.

12
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Second execution: Let the certification trail consist of a set of four

tuples, (xl, al, bl, cl), (x2, a2, b2, c2),. •., (xr, at, br, c,) followed by the sup-

posed convex hull, ql,q2,...,q,n. The code for CONVEXHULL is not used
in this execution. Indeed, the algorithm performed is dramatically different

than CONVEXHULL.

It consists of five checks on the trail data.

• First, the algorithm checks for i E {1,...,r) that xi lies within the

triangle defined by ai,bi, and ci.

• Second, the algorithm checks that for each triple of counterclockwise

consecutive points on the supposed convex hull the angle formed by

the points is less than or equal to 180 degrees.

• Third, it checks that there is a one to one correspondence between the

input points and the points in {xl,...,xr} t_J{ql,-..,qm}.

• Fourth, it checks that for i E {1,...,r}, ai, hi, and ci are among the

input points.

• Fifth, it checks that there is a unique point among the points on the

supposed convex hull which is a local extreme point. We say a point

q on the hull is a local extreme point if its predecessor in the counter-

clockwise ordering has a strictly smaller y coordinate and its successor

in the ordering has a smaller or equal y coordinate.

If any of these checks fail then execution halts and "error" is output. As

mentioned above, the trail data actually consists of indices into the input

data. This does not unduly complicate the checks above; instead it makes

them easier. The correctness and adequacy of these checks must be proven.

Because of space limitations we shah not give the proof here.

Time complexity: In the first execution the sorting of the input points

takes O(nlog(n)) time where n is the number of input points. One can show
that this cost dominates and the overall complexity is O(nlog(n)).

13
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Size Basic Generate Use Compare

Algorithm Certif. Certif.
10000 0.74 0.79 0.11 0.03

20000 1.65 1.75 0.23 0.06

50000 4.64 4.79 0.59 0.14

100000 9.95 10.32 1.19 0.28

Table 1: Huffman Tree on Sun

Size Basic Generate Use Compare

Algorithm Certif. Certif.
1.09 1.32 0.32 0.1010000

20000

50000

2.38 2.91 0.63 0.21

7.01 8.80 1.59 0.50

Table 2: Huffman tree on 386/33

Total

Basic

1.51

3.36

9.42

20.18

Total

Basic

2.28

4.97

14.52

Total % Saving

Certif.

0.93 38.41

2.05 39.28

5.52 41.40

11.79 41.57

Total % Saving
Certif.

1.74 23.68

3.75 24.55

10.89 25.00

It is possible to implement the second execution so that all five checks are

done in O(n) time. /papers/certify3/tabdata/papers/certify3/tabdataChecking

that a point Lies within a triangle is a geometric calculation that can be done

in constant time. Comparing the angle formed by three points to 180 de-

grees can be done in constant time. The thir'd and fourth checks can be

done in O(n) because the certification trail contains indices into the input

data as described above. The uniqueness of the "local extreme" can also be
checked in linear time.

5.4 Minimum Spanning Tree Example

This classic problem has been examined extensively in the literature and

an historical survey is given in [25]. Our approach is applied to a variant

=

u
Size Basic Generate Use Compare

Algorithm Certif. Certif.
10000 1.26 1.29 0.13 0.01

20000 2.71 2.81 0.31 0.01

50000 7.41 7.48 0.70 0.01

100000 15.76 15.87 1.43 0.01

Table 3: Convex Hull on Sun

Total

Basic

2.53

5.43

14.83

31.53

Total % Saving
Certif.

1.43 43.47

3.13 42.35

8.19 44.77

17.31 45.09

14
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Size Basic

Algorithm

10000 1.79

20000 3.86

50000

100000

10.51

22.40

Generate Use Compare

Certif. Certif.

1.88 0.15 0.01

4.08 0.31 0.01

11.16

23.97

0.78

1.64

0.01

0.01

Table 4: Convex Hull on 386/33

Total

Basic

3.59

7.73

21.03

44.81

Size Basic

Algorithm

1000,10000

Generate

Certif.

Use

Certif.

Compare

100,1000 0.04 0.05 0.01 0.00

200,2000 0.10 0.12 0.02 0.00

500,5000 0.30 0.31 0.06 0.00
0.68 0.72 0.13 0.00

1500,15000 1.10 1.14 0.19 0.00

2000,20000 1.51 1.58 0.27 0.00

2500,25000 1.97 2.00 0.35 0.00

Table 5: Minimum Spanning Tree on Sun

Size Basic Generate Use Compare

Algorithm Certif. Certif.

100,1000 0.04 0.03 0.01 0.00

200,2000 0.08 0.08 0.02 0.00

500,5000 0.26 0.24 0.06 0.00

1000,10000 0.59 0.56 0.13 0.00

1500,15000 0.93 0.90 0.20 0.00

2000,20000 1.29 1.28 0.28 0.00

2500,25000 1.67 1.65 0.36 0.00

Table 6: Shortest Path on Sun

Size Basic Generate

Algorithm Certif.

10000 0.23 0.40

20000 0.51 0.86

50000 1.38 2.35

100000 2.96 4.97

Use Compare

Certif.

0.06 0.01

0.13 0.01

0.35 0.02

0.76 0.O4

Table 7: Integer sorting on Sun

Total

Basic

0.47

1.02

2.78

5.92

Total % Saving

Certif.

2.04 43.18

4.40 43.08

11.95 43.18

25.62 42.83

Total

Basic

0.08

0.20

0.60

1.36

2.20

3.02

3.94

Total % Saving

Certif.

0.06 25.00

0.14 30.00

0.37 38.33

0.85 37.50

1.33 39.55

1.85 38.74

2.35 40.36

Total

Basic

0.08

0.16

0.52

1.18

1.86

2.58

3.34

Total % Saving

Certif.

0.04 50.00

0.10 37.50.

0.30 42.31

0.69 41.53

1.10 40.86

1.56 39.53

2.01 39.82

Total % Saving

Certif.

0.47 0.00

1.00 1.96

2.72 2.15

5.73 3.20

15

w



= .

z

Size Basic

Algorithm

10000 1.02

Generate Use Compare

Certif. Certif.

1.18 0.14 0.04

11.74

20000 2.16 2.49 0.29 0.08

50000 5.67 6.48 0.73 0.22

100000 13.48 1.57 0.44

Table 8: Integer Sort on 386/33

Total

Basic

2.08

4140

11.56

23.92

Total % Saving

Certif.

1.36 34.62

2.86 35.00

7.43 35.73

15.49 35.24

I

m

Size

10000

20000

Basic

Algorithm

0.32

0.71

Generate

Certif.

0.33

0.72

Use

Certif.

0.03

0.07

0.18

Compare

0.01

0.01

50000 1.97 1.99 0.02

100000 4.32 4.37 0.38 0.05

Table 9: Pointer sorting on Sun

Size Basic Generate Use Compare

Algorithm Certif. Certif.

10000 1.08 1.15 0.07 0.03

20000 2.41 2.41 0.16 0.07

50000

100000

6.37

13.29

6.38 0.42 0.22

13.33 0.89 0.43

Table 10: Pointer Sort on 386/33

Total

Basic

0.65

1.43

3.96

8.69

TotM

Basic

2.19

4.89

12.96

27.0i

Total %Saving

Certif.

0.37 43.07

0.80 44.05

2.19 44.69

4.80 44.76

Total % Saving

Certif.

1.25 42.92

2.64 46.01

7.02 45.83

14.65 45.76

Size

10000

20000

50000

Basic Generate Use Compare

Algorithm Certif. Certif.
0.86 0.83 0.14 0.01

1.92 1.87 0.28 0.01

5.32 5.37 0.69 0.02

Table 11: Data structs on Sun

Total

Basic

1.73

3.85

10.64

Total % Saving
Certif.

0.98 43.35

2.16 43.89

6.08 42.85
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Size

8

16

32

64

128

256

512

Basic

Algorithm
0.075

0.215

0.561

1.330

3.120

Generate

Certif.

0.091

0.248

0.629

1.468

3.398

Use

Certif.

0.026

0.054

0.111

0.224

0.450

0.9037.225 7.783

16.270 17.388 1.808

Total

Basic

0.151

0.430

1.122

2.660

6.240

14.450

32.540

Total % Saving

Certif.

0.117 28.7

0.302 42.4

0.740 51.6

1.692 57.2

3.848 62.2

8.686 66.4

19.196 69.5

Table 12: Huffman Tree on 68000-based system

w

n

i

u

w

u

Size

Nodes Edges

10 15

10 20

10 25

5O 75

50 100

50 125

100 150

100 200

100 250

500 750

5OO 1000
500 125o
1000 1500

1000 200O

1000 2500

1500 225O

1500 3000

Basic

Algorithm

Generate

Certif.

Use

Certif.

Total

Basic

0.053 0.054 0.055 0.106

0.071 0.072 0.073 0.142

0.088 0.089 0.176

0.323

0.427

0.320

0.423

0.090

0.309

0.400

0.464

0.602

0.789

0.938

0.492 0.496

0.652 0.658

0.874 0.881

1.036 1.045

3.588 3.617 3.047

4.780 4.817 3.955

5.656 5.698 4.717

7.474 7.533 6.115

9.902 9.977 7.919 19.803

11.830 11.917 9.517 23.660

11.503 22.8309.157

11.802

11.415

14.967 15.077

Total

Certif.

0.109

0.145

0.179

% Saving

-2.5

-1.7

-1.5

0.639 0.632 1.2

0.826 2.3

1.983

6.664

8.772

10.415

13.649

17.895

21.434

20.660

0.960 2.5

1.260 3.6

1.671 4.6

4.5

0.846

O.984

1.305

1.748

2.073

7.176

9.560

11.311

14.949

29.933 26.879

7.7

9.0

8.6

9.5

10.7

10.4

10.5

11.4

Table 13: Min Spanning Tree on 68000-based system
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of the Prim/Dijkstra algorithm [47, 18] as explicated in [54]. We provide a

definition of the problem below. For more information on the graph theoretic

terminology used in this problem and others the reader may consult [54, 17].

Definition 5.2 Let G = (V, E) be a graph and let w be a positive rational
valued function defined on E. A subtree of G is a tree, T(V l, El), with

V I C_ V and E' C.C_E. We say T spans V _ and V t is spanned by T. If V I = V

then we say T is a spanning tree of G. The weight of this tree is _eE' w(e).

A minimum spanning tree is a spanning tree of minimum weight.

The problem is to input a graph with edge weights and output a mini-

mum spanning tree. The algorithm for this problem which has the fastest

asymptotic time complexity uses fusion trees and is given in [20]. This al-

gorithm however appears to have a large constant of proportionality. Other

asymptotically fast algorithms [22] also appear to be handicapped by large

constants of proportionality. A fuller discussion of the two algorithms we

employ for generation and use of a certification trial is given in [1].

5.5 Shortest Path Example

This is another classic problem which has been examined extensively in the

literature. Our approach is applied to a variant of the Dijkstra algorithm

[18] as explicated in [54]. We are concerned with the single source problem,

i.e., given a graph and a vertex s, find the shortest path from s to v for

every vertex v.
The algorithm for this problem which has the fastest asymptotic time

complexity uses fusion trees and is given in the same paper which we cited

earlier when considering the minimum spanning tree problem[20]. This al-

gorithm however appears to have a large constant of proportionality. Our

solution employing the certification trail method is very closely based on the

solution we gave for the minimum spanning tree problem [1].

5.6 Huffman Tree Example

This is another old algorithmic problem and one of the original solutions

was found by Huffman[30]. It has been used extensively to perform data

compression through the design and use of so called Huffman codes. These

codes are prefix codes which are based on the Huffman tree and which

yield excellent data compression ratios. The tree structure and the code

design are based on the frequencies of individual characters in the data to

18



w

w

m

w

be compressed. Here we are concerned exclusively with the Huffman tree.

See [30] for information about the coding application.

Definition 5.3 The Huffman tree problem is the following: Given a se-

quence of frequencies (positive integers) f[l], f[2],..., f[n], construct a tree

with n leaves and with one frequency value assigned to each leaf so that

the weighted path length is minimized. Specifically, the tree should mini-

mize the following sum: _I,ELEAF len(i)f[i] where LEAF is the set of leaves,

len(i) is the length of the path from the root of the tree to the leaf li, f[i] is

the frequency assigned to the leaf li.

The method we employ to generate and use a certification trail is detailed

in the following technical report [2].

5.7 Sorting Example

This important problem has a massive literature. In this section we will

discuss how to apply the certification trail approach to the sorting problem.

Let us assume that the sorting algorithm takes as input an array of n ele-

ments and outputs an array of n elements. The algorithm is supposed to

place the data into non-decreasing order.

To design a certification trail algorithm we must discover the nature of
the data that should be included in the certification trail to allow quick

computation of the final output sorted array. Suppose that we decide to

use the output array itself as the certification trail. We note that it is easy

to check that this array is in non-decreasing order by simply performing a

single pass over the array. Unfortunately, it is considerably more difficult to
make sure that this array contains exactly the same elements as the original

input array. Indeed, this problem has a lower bound time complexity of

_(nlog(n)) in a comparison based model.
Because of this difficulty we use the permutation of the elements defined

by the input and output data arrays as the certification trail. To compute

this permutation we allocate a new array of size n called permute which

is initialized by setting its ith element to i. (Alternatively, we add a new

field to pre-existing structures when structures are being sorted.) Each time

the sort algorithm exchanges two elements the corresponding elements in

the permute array are also exchanged. (If structures are being used then

this happens automatically.) This approach works with all sort algorithms

which are based on exchanging array elements. The code below shows how
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the permute array is used to rapidly recompute the final sorted output array

and how the permute array itself is checked.

Algorithm SORT USING TRAIL

Input: Arrays indata[1..n] and permute[1..n]

Output: outdata[1..n] containing the data in indata sorted into non-decreasing order

The first part of the algorithm checks that the permute wlues are in the

proper range and constructs the output array.

1 FORi:= ltonDO

2 IF permute[i] > n or permute[i] < 1

3 THEN OUTPUT("Error: not a permutation") STOP

4 ELSE outdata[i] := indata[permute[i]]

5 END FOR

m

m

The next part of the algorithm checks that the output array is properly

ordered.

6 FOR i := 2 to n DO

7 IF outdata[i - 1] > outdata[i] THEN OUTPUT("Error: decreasing value") STOP

8 END FOR

The final part of the algorithm checks that the permute array defines a

proper permutation, i.e., each element is mapped to exactly one element.

9 FOR i := 1 to n DO present[i] = FALSE END

10 FORi:= ltonDO

11 IF present[permute[i]] = TRUE

12 THEN OUTPUT("Error: not a permutation") STOP

13 ELSE present[permute[i]] := TRUE
14 END FOR

END SORT USING TRAIL

Our experimental work on the Sun was based on a variant of quicksort

[26] which is called quickersort [50]. The implementation of this algorithm
that we used was provided by a Berkeley UNIX software distribution for

the Sun. Our experimental work on the IBM PC was based on a quicksort

algorithm implemented as part of a Gnu library of functions.
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6 Answer-Validation Problem for Abstract Data

Types

The next few sections of this paper are concerned with the answer-validation

problem for abstract data types. This kind of problem was originally pro-

posed in [3] and provides a basis for applying the certification-trail method

to wide classes of algorithms. Because of space limitations we will not discuss

the details of how this can be done.

Below, we define the answer-validation problem. Next, we give two ex-

ample algorithms for the answer-validation problems. The first algorithm

is for a priority queue which allows insert, min and deletemin operations.

The second algorithm is for a priority queue which allows insert, min, delete

and deletemin operations. In the next section experimental data on the

execution times of these algorithms is presented.

For each abstract data type we define an answer-validation problem. In-

tuitively, the answer validation problem consists of checking the correctness

of a sequence of supposed answers to a sequence of operations performed on

the abstract data type. More formally, the input to the answer-validation

problem is a sequence of operations on the abstract data type together with

the arguments of each operation. In addition, the sequence contains the

supposed answers for each of the operations which return answers. In par-

ticular, each supposed answer is paired with the operation that is supposed

to return it. Examples of such inputs are given in the columns labelled

"Operation" and "Answer" table 15.

The output for the answer-validation problem is the word "correct" if

the answers given in the input match the answers that would be generated

by actually performing the operations. The output is the word "incorrect"
if the answers do not match. It is also useful to allow the output word to

say "ill-formed". This output is used if the sequence of operations is ill-

formed, e.g., an operation has too many arguments or an argument refers

to an inappropriate object.
The answer-validation problem is similar to the idea of an acceptance

test which is used in the recovery-block approach [48, 6] to software fault
tolerance. The main difference is that an answer-validation problem is de-

pendent upon a sequence of answers, not just an individual answer. Hence,

if an incorrect answer appears in the sequence, it may not be detected imme-

diately. It is guaranteed, however, that an incorrect answer will be detected

at some point during the processing of the entire sequence. By allowing
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for this latency in detection, it is possible to create a much more efficient

procedure for solving the answer-validation problem.

The most important aspect of the answer-validation problem is that it

is often possible to check the correctness of the answers to a sequence of

operations much more quickly than actually calculating what the answers

should be from scratch. In other words, the answer-validation problem has a

smaller time complexity than the original abstract-data-type problem. This

speedup is very useful in fault-detection applications.

It is possible to run an answer-validation algorithm for some abstract

data type concurrently with some algorithm which uses the abstract data

type. The answer-validation algorithm could act as a monitor making sure
that all interactions with the abstract data type are handled correctly. This

is valuable because many algorithms spend a large fraction of their time

operating on abstract data types. Note, the overhead of this monitor is less

than the overhead of actually performing the data-type operations a second

time.

7 Answer Validation for Priority Queue

We will first consider the priority-queue abstract data type which allows

only three operations: insert, min and deletemin. An example of a sequence

of such operations appears in table 14. Many different data structures can

be used to implement priority queues including heaps [61]; and balanced

search trees such as AVL trees [5], red-black trees [27], or b-trees [13]. It

is possible to process a sequence of O(n) operations in O(nlog(n)) time

using the data structures above. Furthermore, there is a lower bound of

fl(nlog(n)) because it is possible to sort using a priority queue. Remark-

ably, the answer-validation problem can be solved using only O(n) time, as

documented below.

The algorithm which we present in this section is the same as that given

in [3]. It is necessary to include a description of this algorithm because the

algorithm in the next section (which has not appeared before) builds on this

algorithm.

Each operation is time-stamped, i.e., the operations are assigned integers

sequentially starting with 1 which is easy to do with a counter. The answer-

validation algorithm uses a stack called answerstack. The contents of this
stack are illustrated in table 14. The top of the stack is on the left in table 14.

Let us consider the kinds of tests that an answer-validation algorithm

w 22
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Time Operation Answer Insert time

1 insert(6,300)

2 insert(2,404)

3 insert(3,250)

4 deletemin (3,250) 3

5 insert(10,248)

6 insert(12,245)

7 insert(4,260)

8 min (12,245) 6

9 insert(13,140)

10 insert(5,142)

11 deletemin (13,140) 9

12 deletemin (5,142) 10

13 deletemin (12,245) 6

14 deletemin (10,248) 5

15 deletemin (4,260) 7

Stack used in validation

(3,250,4)

(12,245,8), (3,250,4)

(13,140,11),

(5,142,12),

(12,245,8), (3,250,4)
(12,245,8), (3,250,4)
(12,245,13),(3,250,4)
(10,24S,14),(3,250,4)

(4,260,15)

Table 14: Sequence of Priority Queue operations illustrating answer valida-

tion algorithm
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for a priority queue might perform. Suppose (i,k) is the answer to some

min or deletemin operation. Further, suppose (il,k ') was the answer to a

previous min or deletemin operation. If the priority queue is correct then

either (i,k)>_(i',k') or (i,k) was inserted after the answer (i',k') was given. **

multiple insertions possible?* This suggests that the time of insertion for an
element and the time of an answer should be recorded and the algorithm

below does this. Unfortunately, if an algorithm compares an ordered pair

which has been given as an answer against all previous answers then the

algorithm complexity is at least O(m2). To avoid this a stack called the
answerstack is used. The answerstack was designed to allow many compar-

isons to be done implicitly and thus the overall complexity of the many tests

is reduced.

Algorithm for Answer Validation for Priority Queue

Input: Sequence of m operations together with arguments and supposed

answers for the priority-queue data type.

Output: "correct", "incorrect" or "ill-formed"

Declarations: Array called inserttime indexed by item number. Array ele-

ments contain either "absent" or a time-stamp. Array called keyvalue in-

dexed by item number. Array elements contain either "absent" or a key

value. Initially, each element in these two arrays contains "absent". Stack

of ordered triples called answerstack. Each ordered triple has the following

form: first element is an item number, second element is a key value, and

third element is a time-stamp, answerstack is initially empty.

First phase: In this phase we process each operation as it appears serially

using the following rules:

Let currenttime refer to the time-stamp of the operation being processed.

insert(i,k): If inserttime[i]_"absent" then output "ill-formed" and stop.

Otherwise, let inserttime[i] = currenttime and let keyvalue[i]=k.

rain (i,k): (where (i,k) is the supposed answer to the deletemin oper-

ation.) If inserttime[i]="absent" or keyvalue[i]_k then output "ill-formed"

and stop.

Otherwise, let (i_,k _) be the item number and key value of the triple on

the top of answerstack (if there is one). Repeatedly pop the stack until

(i,k)<(i',k') or until answerstack is empty.
If answerstack is empty then push the triple (i,k,currenttime) onto an-

swerstack and process the next priority queue operation.
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If answerstack is non-empty then let the top element be (ir,kr,answertimer).

If inserttime[i]<answertime r then output "incorrect" and stop. Otherwise,

push the triple (i,k,currenttime) onto answerstack and process the next pri-

ority queue operation.

deletemin (i,k): (where (i,k) is the supposed answer to the deletemin

operation.) Perform the same actions as those described for the min opera-

tion. However, just before processing the next priority queue operation, let

inserttime[i]="absent" and let keyvalue[i]="absent'.

Second phase: In this phase we operate on the items which have been
inserted but have never been deleted.

Scan the array inserttime and for each item number for which inserttime[i]_"absent"

construct an ordered triple (i,keyvalue[i],inserttime[i]). Call this set of or-

dered triples remainders.

Use a bucket sort to sort the triples in remainders by their time-stamps, i.e.,

the third element of the ordered triple.

Merge the triples in remainders together with the triples in answerstack so

that they are all ordered by their time-stamps, i.e., the third element of the

ordered triple.

Scan the combined triples to determine if there exist two triples which satisfy

the following: inserttime[i]<answertime' and (i,keyvalue[i])<(i',k'); where

one triple is from remainders and has the form (i,keyvalue[i],inserttime[i])

and where the other triple is from answerstack and has the form (i_,k',answertime_);

If these two triples exist then output "incorrect" and stop. Otherwise output

"correct" and stop.

m

Theorem 7.1 The algorithm for answer validation of the priority queue

abstract data type is correct.

Theorem 7.2 The answer validation algorithm for priority queue has a

time complexity of O(n) .for processing a sequence of O(n) operations.

For proofs of these theorems see [3].
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8 Answer Validation for Generalized Priority Queue

We next consider the priority-queue abstract data type which allows four

operations: insert, min, deletemin, and delete. An example of a sequence of

such operations appears in table 15.

The algorithm to solve the validation problem for this data type is an en-

hanced version of the algorithm given above for the data type which allowed

only three priority-queue operations.

Algorithm for Answer Validation for Generalized Priority Queue

Input: Sequence of m operations together with arguments and supposed

answers for the priority-queue data type.

Output: "correct", "incorrect" or "ill-formed"

Declarations: All the declartions used in the earlier algorithm are used again.

In addition, a collection of sets called stacksets are used. Each set in stacksets

consists of a set of item numbers (possibly the empty set). There is a one-to-

one correspondence between the sets in stacksets and the ordered triples in

answerstack. Initially, answerstack consists solely of the ordered triple (0,-

oc,-1). Also initially, stacksets contains exactly one set which is the empty

set and which corresponds to (0,-oc,-1).

First phase: In this phase we process each operation as it appears serially

using the following rules:

Let currenttime refer to the time-stamp of the operation being processed.

insert(i,k): Perform the same actions as those given earlier for the insert

operation. In addition, add the item number i to the set in stacksets corre-

sponding to the top element in answerstack.

min (i,k): (where (i,k) is the supposed answer to the deletemin opera-

tion.) Perform the same actions as those given earlier for the rain operation.

In addition, if any elements are popped off of answerstack then the sets in

stacksets corresponding to these elements are unioned together to form a

new set. This new set is placed in correspondence with the new top element

of answerstack.

deletemin (i,k): (where (i,k) is the supposed answer to the deletemin

operation.) Perform the same actions as those given for the min opera-

tion described immediately above. In addition, remove the item number

i from the set in stacksets which contains it. Further, before processing
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Time Operation Answer Insert time Stack used in validation
(o,-_,-1)1 insert(5,310)
(s}
(o,-_¢,-1)

2 insert(6,210) {5,61

3 insert(8,280) (0,-0¢,-1)
{5,6,6}

4 min (6,210) 2 (6,210,4)
• {s,6,s}

5 insert(9,190) (6,210,4)
{5,6,8,91

6 min (9,190) 5 (9,190,6), (6,210,4)

{5,6,8,9}

7 insert(2,275) (9,190,6), (6,210,4)
{2}, {5,6,8,9}

8 delete(8) 3 (9,190,6), (6,210,4)

{21, {5,6,9}

9 insert(12,170) (9,190,6), (6,210,4)

{2,12}, {5,6,9}

10 insert(14,400) (9,190,6), (6,210,4)
{2,12,14}, {5,6,9}

11 deletemin (12,170) 9 (12,170,11), (9,190,6), (6,210,4)
{2,14}, {5,6,9 /

12 insert(3,290) (12,170,11), (9,190,6), (6,210,4)

{3/, {2,141, {5,6,9/

13 insert(7,330) (12,170,11), (9,190,6), (6,210,4)
{3,7/, {2,14}, {5,6,9}

14 insert(X5,200) (12,170,11), (9,190,6), (6,210,4)

{3,7,151, {2,14/, {5,6,9t

15 delete(9) 5 (12,170,11), (9,190,6), (6,210,4)

{3,7,15/, {2,141, {5,61

16 deletemin (15,200) 14 (15,200,16), (6,210,4)
{2,3,7,14}, {5,6}

17 delete(7) 13 (15,200,16), (6,210,4)
{2,3,14}, {5,6}

18 ddetemin (6,210) 2 (6,210,16)
{2,3,5,14}

19 delete(14) 10 (6,210,18)
{2,3,5}

Table 15: Sequence of Priority Queue operations illustrating answer valida-

tion algorithm
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the next priority queue operation, let inserttime[i]="absent" and let key-

value[i] = "absent".

delete(i): If inserttime[i]="absent" or keyvalue[i]="absent" then output

"ill-formed" and stop.

Otherwise, let inserttime=inserttime[i] and let k=keyvalue[i]. Next, let

inserttime[i]="absent" and let keyvalue[i]="absent'.

Now, let (il,kl,answertime r) be the ordered triple which corresponds to

the set in stacksets containing item number i. Next, remove item number i

from the set which contains it.

If answertime'>inserttime and (i,k)>(i',k') then output "incorrect" and

stop.
If answertime'>inserttime and (i,k)_<(i',k') then process the next priority

queue operation.

If (i_,k',answertime _) is the top element of answerstack then process the

next priority queue operation.

Let (i",k",answertime") be the element immediately above (i',k',answertime')
on answerstack.

If (i,k)>(i",k") then output "incorrect" and stop. 0ther_ise, process the

next priority queue operation.

Second phase: In this phase we operate on the items which have been
inserted but have never been deleted.

For this phase one performs the same operations as the second phase de-

scribed earlier.

D

w

Theorem 8.1 The algorithm above for answer validation of the priority

queue abstract data type is correct.

Theorem 8.2 The answer validation algorithm above for priority queue has

a time complezity of O(n) for processing a sequence of O(n) operations.

Proofs omitted for space reasons. It is clear that a priority queue with

operations insert, delete, max, deletemax can also be validated in linear time

by changing the appropriate signs in the algorithm above.

Definition 8.3 Consider a sequence of priority queue operations together

with arguments and supposed answers. The sequence may contain the

following operations: insert, delete, min, deletemin, max, and deletemax.
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Based on this sequence we define a new sequence called a minimum sequence.

This sequence differs from the original sequence as follows: Each max op-

eration and answer pair is removed from the sequence. Each deletemax

operation and answer pair is replaced by a delete(i) operation where i is the

item number given in the answer to the deletemax operation. Each other

operation remains the same.

We also define a maximum sequence. This sequence differs from the

original sequence as follows: Each rain operation and answer pair is removed

from the sequence. Each deletemin operation and answer pair is replaced

by a delete(i) operation where i is the item number given in the answer to

the deletemin operation. Each other operation remains the same.

Theorem 8.4 Consider a sequence of priority queue operations together

with arguments and supposed answers. The sequence may contain the fol-

lowing operations: insert, delete, min, deletemin, ma.x, and deletemax. The

answers given for this sequence are correct if and only if the answers given

for the corresponding minimum and maximum sequences are both correct.

This theorem allows us to define an algorithm which solves the answer-

validation problem for general priority queue.

W
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9 Probabilistic Model

We will now present a simple probabilistic model with accompanying analy-

sis which will permit a comparison between of our certification-trail method

and the classical time-redundancy approach [32, 52]. The analysis shows

that when the certification-trail method has a smaller execution time than

the time-redundancy approach it yields strictly superior performance. This
means the certification trail method has both a a smaller probability of er-

ror and a smaller probability of undetected error. Surprisingly, the analysis

also reveals the intriguing result that the certification-trail method often can

display superior performance even when the method has the same execution

time or a longer execution time than the time-redundancy approach. This

superior behavior stems from the typical assymetry of the execution times
of the first and second executions in the certification-trail method.

We make the following assumptions.

i. Errors are distributed exponentially with parameter )_.
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ii. If errorsoccurduringonly onephaseof the execution,then they are
detected.

iii. If errorsoccurin both phasesof anexecutionthe)' arenot detected.

Forsolutionsto a problemwith run timesa and b, we therefore have:

Pr{correct} = e -x(a+b)

Pr{detected} = e-_=(1 - e -xb) + e-Xb(1 - e -x_)

= e -)'a ..1_e -)'b _ 2e-_(=+b)

Pr{undetected} = (1- e->'=)(1- e-'xb)

= 1 - e -_ - e -xb + e -)'(a+b)

= 1 - Pr{correct}- Pr{detected}

Given two solutions for a problem, we say that the first is strictly superior
to the second iff:

w

Pr,{correct} > Pr2{correct}

Pr,{correct} > Pr2{correct}

and

or

and

Prl{undetected} < Pr2{undetected}

Prl{undetected} < Pr2{undetected}

This implies that the run time of the first solution is no greater than
that of the second solution.

Observation 1 Suppose there are two solutions (using certification trails)
to a problem, such that each solution runs in two phases, and the combined

run times of phases is the same for both solutions. Then the solution with

the greater time imbalance between phases is strictly superior.

Proof: Let 2a = the run time . Let a + b the run length of the first

phase of the first method, and a + c be the run time of the first phase of

the second method. Then the second phases have times of a - b and a - c

respectively. Assume b < c.

Since the total run time is the same for both solutions, we have Prl {correct} =

Pr2{correct} = e -)_2a, so we need only show that Prl {detected} < Pr2{detected},
ie.
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e-:q=+b)(1 _ e-_(=-b)) + e-_(=-_)(1 _ e-_(=+_))

e-:q _+b) + e-'\(_-b)

e -'xb + e )_b

Setting x = e_b and y = e _c we want

< e-:q_+_)(1 _ e-_(=-_)) + e-_(_-¢)(1 _ e-_(_+_))

< e--\(_+_) + e-_(_-_)

< e -)'c + e )_c

1 1
x+- < y+-

x y
1 1

x y

y-x

xy

< y-x

< y--x

forl<x<y

7
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Corollary 1 Given a basic algorithm for a problem, a certification trail

method is superior to running the basic algorithm twice if the total run time

is no greater than twice that of the basic algorithm.

The above statements apply to the situation of a single execution of a

solution. A more interesting case is to iterate the solution until no errors are

reported, that is we either arrive at the correct answer, or have undetected

errors.

Let Prite_{Correct} denote the probability of finding a correct solution

in the iterated scheme and Prit_{undetected} denote the probability of

accepting an incorrect run.
Note that we repeat a run only when errors are detected, so if we obtain

the correct answer on the n - th run, the previous n - 1 runs must have

resulted in detected errors. Thus it is clear that:

Similarly,

Prit_r{correct}

O0

= Pr{correct} _ Pr{detected}
i=O

Pr{correct}

- 1- Pr{deteeted}

Pr{undetected}

Prit¢_{undetected} = 1 - Pr{detected}
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For the iterated scheme, we will say that one method is superior to

another if the probabihty of obtaining the correct answer is larger. Obviously

if a method is superior in the single run sense, it must be superior in the

iterated case. However it is possible for one method to be superior to another

in the iterated scheme, but not in the single run scheme. This means that

a certification trail method may be better than running a basic algorithm

twice, even if the certification trail takes longer to run!

Suppose we have a basic algorithm A with running time a for a particular

problem, and a certification trail method with phases running in times b and

c. Given b, how small must c be, for the certification trail to be superior?

We require:

w

Prc_Tt{correct}

1 - Prcert {detected}

e-;_(b+c)

1 - e -xb - e -_ + 2e-_(_'+_)

e-;_(b+_) _ 2e-_(_+b+_)

e-)'_(e -:_b + e -:_2': _ 2e-_'(,_+b))

> Prb_sic{correct}l - Prb_ic{detected}

e- )_2a
>

1 - 2e -;_a + 2e -:x2a

> e-:x2a - e -_(2a+b) - e-;_(2a + c)

> e-_2=(1- e-_b)

Note that b > a, so e -'\b + e -_2a - 2e -_(=+b) must be positive. So,

!

e-_,2a(1 _ e-,Xb)
e -;_c >

e -_b + e-'X_(1 _ e-,Xb)

1 e-_2a(1 - e -_b)

c < ----£1ne__b+e__2_(l_e_:_b )

Since the argument to In is strictly between 0 and 1, c is well defined for

any choice of a, b, and )_.

In addition to the probability of correctness, we would like to know the

expected running time using the iterated approach. Fortunately, this is

easily determined.

Our probability of stopping on a particular execution is Pr{correct} +

Pr{undetected} = 1 - Pr{detected}. Therefore with that probability we

stop on the first execution, with probability Pr{detected}(1- Pr{detected})

we stop on the second execution, and in general we stop on the nth execution

with probability (1 - Pr{detected})(Pr{detected}) '_-1. This gives us an

expected number of iterations of,
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(1 - Pr{detected}) _(i + 1)Pr{detected} i
i=O

Now,

_--](i + 1)x i - (1 - x) 2
i=0

so we find that the expected number of iterations is,

1

1 - Pr{detected}

Multiplying the run time of a single iteration will give us the expected

running time.

Table 16 shows information for running a basic algorithm. The run time

of a basic algorithm is set to 1 unit of time. The basic algorithm is run

twice and the results compared, we assume that comparator is fast enough

so that the time it takes is negligible (this is justified by the experimental

results), and that it is error free. We compute

i. Prob. Correct - The probability that both phases are error free.

ii. Prob. Detected - The probability that exactly on of the phases contains

an error.

iii. Prob. Undetected - The probability that both of the phases contain

errors.

iV. Iterated Prob Correct - If the basic algorithm is iterated (each itera-

tion is two runs), this is the probability that the terminating result is
correct.

V. Expected Runtime - The expected run time of the algorithm in the

iterated model. For the basic algorithm this is twice the expected

number of iterations.

Tabel 17 illustrates the "breakeven" point for the certification trail ap-

proach. Given a value for _ and a run time b of a trail generating algorithm.

The breakeven point for the run time of the trail checking algorithm is the
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0.01

0.I0

1.00

0.01

0.01

0.01

0.i0

0.i0

0.i0

i.00

1.00

--_-_-

Basic

Algorithm

Prob

Correct

Prob. Prob.

Detected Undetected

i 0.980199 0.019702

1 0.818731 0.172213

1 0.135335 0.465088

Iter.

Prob.

Correct

0.000099 0.999899

0.009056 0.989060

0.399576 0.253005

Expected
Runtime

2.040197

2.416081

3.738935

Table 16: Balanced Probabilites

Generate Trail BreakevenTrail Checker

1.10 0.909050

1.50 0.666111

2.00 0.498750

1.10 0.908683

1.50 0.661128

2.00 0.487505

1.10 0.905504

1.50 0.614107

2.00 0.379885

Table 17: Certification checker breakeven points

point at which the iterated probability of correctness is the same as for the

"basic" algorithm (which has a run time of 1).
Run times less than this will result in the certification trail solution being

superior. It is interesting to notice that in the total length of the solution at

the breakeven point is greater than 2, ie. running the basic algorithm twice.
Table 18 is similar to the first one, the difference being that this examines

the behavior of certification trail methods for different run times of the two

phases. The meaning of the other columns is identical to the meaning in the

table for basic algorithms. Of interest is the row ,k = 1.00, b = 1.50, c = 0.25.

Compare this with the first table for )_ = 1.00. We see that the certification

method has a greater probability of being correct for a single run and the
total run time is shorter than twice the basic algorithm, yet the expected

iterated run time is larger!

w

w

10 Fault Injection Experiments

A series of hardware fault injection experiments have been conducted during

which combinations of the address, data, and control lines of a Motorola

34



i

I

u

n

u

i

=

X Generate

Certif.

0.01 1.10

0.01 1.10

0.01 1.10

0.01 1.50

0.01 1.50

0.01 1.50

0.01 2.00

0.01 2.00

0.01 2.00

0.10 1.10

0.10 1.10

0.10 1.10

0.10 1.50

0.I0 1,50

0.10 1.50

0.10 2.00

0.10 2.00

0.10 2.00

1.00 1.10

1.00 1.10

1.00 1.10

1.00 1.50

1.00 1.50

1.00 1.50

1.00 2.00

1.00 2.00

1.00 2.00

Use

Certif.

0.25

0.50

0.75

0.25

0.50

0.75

0.25

0.50

0.75

0.25

0,50

0.75

0.25

0.50

0.75

0.25

0.50

0.75

0.25

0.50

0.75

0.25

0.50

0.75

0.25

0.50

0.75

Prob Prob. Prob. Iter. Expected

Correct Detected Undetected Prob. Runtlme

Correct

0.986591 0.013382 0.000027 0.999972 1.368311

0.984127 0.015818 0.000055 0.999945 1.625716

0.981670 0.018248 0.000082 0.999917 1.884387

0.982652 0.017311 0.000037 0.999962 1.780827

0.980199 0.019727

0.975310

0.977751 0.022138

0.977751 0.022199

0.024591

0.972875 0.026977

0.000074

0.000111

0.000049

i 0.000099
0.000148

0.999924

0.999886

0.999949

0.999899

0.999848

2.040248

2.300937

2.301082

2.563028

2.826245

0.873716 0.123712 0.002572 0.997065 1.540590

0,852144 0.142776 0.005080 0.994074 1.866490

0.831104 0.161369 0.007527 0.991025 2.205976

0.839457 0.157104 0,003439 0.995920 2.076175

0.818731

0.798516

0A74476 0,006793 0.991771 2.422703

0.010065 0.987553 2.7826530.191419

0,004476 0.9944260.1970080.798516 2.802021

0.778801 0.212359 0.008841 0.988776 3.174033

0.759572 0.227330 0.013098 0.983049 3.559087

0.259240 0.593191 0.147568 0.637254 3.318513

0.201897 0.535609

0.157237 0.490763

0.173774 0.654383

0.305674

0.262495 0.434755 3.445370

0.352000 0.308770 3.632888

0.171843 0.502793 5.063409

0.306876 4.535047

0.409903 0.204539

0.135335

0.105399

0.558990

0.484698 4.366374

0.105399 0,703338 0,191263 0.355283 7.584379

0.082085 0,577696 0,340219 0.194374 5.919905

0.063928 0.479846 0.456226 0.122902 5.286897

Table 18: Unbalanced Probabilites
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M68000-based target system were pulsed with selected signals of various

types and durations while in the process of executing algorithms. In addition

to the MC68000 microprocessor which served as the cpu, the target also was

comprised of 512K bytes of RAM, 512 bytes of ROM, and numerous I/O

modules to support serial and parallel communication. A timer module is

also included in the target which uses the 4Mhz clock as a reference so as

to provide execution time data for experiments. Finally, a simple operating

system is resident in the ROM of the target which provides programming

and operational support.
The fault injection testbed on which these experiments were performed is

illustrated as the configuration shown in Figure 3. In addition to the target

system, the fault injection testbed contains other modules which perform

the fault injection and data acquisition functions under instruction from

the Operations Control Console. By means of RS232C, SCSI, and GPIB

interfaces, a Macintosh IICX serves as the Operations Control Console per-

mitting fault injections to be precisely executed and resulting error data to

be recorded for later analysis by a SUN SPARCstation 2.

The Operations Control Console also communicates over a VMEbus with

the Testbed Controller which is responsible for overall testbed operation.

The primary component of the Testbed Controller is a MC68030-based unit

with 8 Mbytes of SRAM to store error data from fault injection runs as
communicated to it over the VMEbus from the data acquisition module.

The Testbed Controller also is similarly responsible for the operations of

the fault injection module as determined by commands from the Operations

Control Console.

The fault injection module and the data acquisition module have access

via edge connector pins to the lines of the target system selected for injection

and monitoring, respectively. The fault injections are precisely triggered af-

ter some operator determined delay following the appearance of an operator

pre-selected set of bits on either the address Lines of the address bus or the

data lines of the data bus. Similarly, the durations and frequencies of the

injections are also controlled by the operator. The injections emanate from

a bank of programmable function generators included in the fault injection

module. The precision with which fault conditions are triggered and injected

permits the resulting error conditions which are observed to be repeated (if

necessary) for further monitoring/analysis. The data acquisition module is

also triggered by the same address or data bits that activated the fault injec-

tion module. However, there is no delay associated with the data acquisition

function; transfer of the signals on the lines being monitored by the data
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acquisition module to the memory of the Testbed Controller commences

immediately the data acquisition module's activation. Data monitored by

the data acquisition module is transmitted directly onto VME bus and then
written into the SRAM of the Testbed Controller.

10.1 Fault injection and error classification in MC68000 tar-

get system

To generally indicate the details of the fault injection experiments using the

target system, the injections and resulting errors can be summarized and

displayed at the Operations Control Console as illustrated in Figure 4.

In the example illustrated in Figure 4, the trigger address for the injection

was selected by the operator to be address 1019E (hexadecimal) in the first

version of Huffman tree program which was to generate both the output

and the certification trail. The actual injection consisted of holding the

lower 4 bits of the data bus at logical zero starting 2 microseconds after

the recognition of the trigger address by the fault injection module and

then maintaining the logical zero on these lines for various durations lasting
between 1 and 10 microseconds. For this example, we see that 5 distinct

error conditions resulted depending on the duration of the injection. The

details of data errors classified as type 2 and type 3 are beyond the scope of

this discussion. Suffice it to say that each such type of data error observed

in this particular experimental run could be interpreted as an inconsistent

labeling of nodes in the certification trail passed to the second program. In

each case, however, it should be emphasized that the execution of the second

program utilizing the certification trail detected the error. The other errors

listed in Figure 4 can be categorized as address errors and illegal instructions.

Our purpose in presenting Figure 4 is only to illustrate an example of

a fault injection run with a subsequent error analysis and classification. In

general, the errors resulting from injections into the target system could be
classified as:

• No error.

• Data output errors

• Certification trail errors

• Addressing errors

• Data value errors
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Fault
Delay Width Error

m

i

xxxxxxx0 7[
mmmmI_mmmmmmlml

0 US US no error
.2
.3
.4
.5
1
2

4

4.5
5

5.5

6

7

8

9

10

no error
no error

ADDR TRAP ERROR
ADDR TRAP ERROR

ADDR TRAP ERROR
ADDR TRAP ERROR

ADDR TRAP ERROR
ADDR TRAP ERROR
data_error.2

Certification Error: Inconsistent Labels
data_error.2

Certification Error: Inconsistent Labels
data_error.3

Certification Error: Inconsistent Labels
data_error.3

Certification Error: Inconsistent Labels
data_error.3

Certification Error: Inconsistent Labels
data_error.3

Certification Error: Inconsistent Labels
ILLEGAL INSTRUCTION

Figure 4: Example of output displayed at Operations Control Console for

fault injection run for Huffman tree algorithm program
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• Halt generated

• Reset generated

• Non-termination of program

• Program mutilation

Currently, the testbed tools are being expanded to produce automated

injections using suites of fault conditions on the target system.

Software fault injection experiments were also performed in which in-

structions, data, and stack contents were modified using both the Sun Sparc-

station and the 386 machine with which the previously detailed timing data

was collected. The details of these fault injection experiments will be pre-

sented in a companion document.

11 Concluding Discussion

This paper experimentally supplements two previous FTCS papers [1, ?]

which theoretically explore the new fault tolerance technique referred to as

the certification trail method. We have presented experimental timing data

which illustrates the advantages of the certification trail technique over clas-

sical time redundancy. We have further presented analytical results which

further support the significance of the certfication trail technique.
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1. The Experimental System Overview

This system provides an experimentM environment for recording and ana-

lyzing upset data in computer systems. This chapter provides the information

on the system configuration and general hardware description.

1.1 System Configuration

This experimental system is mainly based on the VMEbus and controlled

by the 68030 CPU hoard. The VMEbus provides a master-slave, asyn-

chronous non- multiplexed data transfer medium. The target system (CPU

Under Test) and the Fault Injection Module are connected by its local bus.

Fig.l.1 shows the experimental configuration. This system's features in-
clude:

• 68030 CPU Board

• Up to 8 Mbyte SRAM Memory Modules

• Floppy Disk and SCSI Bus Controller (FDC/SCSI)

• 80 Mbyte Hard Disk and 3.5" Floppy Disk Drive

• OS-9 Operating System

• Chassis with power supply, cooling fans, and motherboard

• Data Acquisition Module

• CPU Under Test (MC68000 Educational Corn _uter Board)

• Fault Injection Module

• (GP-IB I/F Controller)

• (SUN SPARCstation)
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1.2 General System Description

This section briefly describes the general description of each module of tile

experimental system. For detailed information, refer to the user's manuals

on specific modules.

• 68030 CPU Board

- SYS68K/CPU-33XN (Force Computers Inc.)

- 68030 CPU with 16.7 MHz clock frequency.

- Not equipped with the Floating Point Coprocessor.

- 32-bit high speed DMA controUer for data transfers.

- 1 Mbyte of shared dynamic RAM.

- Two multiprotocol serial I/O channels.

- Up to 2 Mbyte EPROM and up to 512 Kbyte SRAM/EEPROM.

- Real Time Clock with calendar and on-board battery backup.

- Full 32 bit VMEbus master/slave interface.

• Memory Module

- SYS68K/SRAM-6 (Force Computers Inc.)

- 2 Mbyte SRAM on SRAM-6.

- Battery backup for SRAM devices.

- 55ns(typical) Read/Write Access Time.

- Jumper selectab]e access address and address modifier code.

- VMEbus intereface supporting 32 data and 32 address lines.

• Floppy Disk and SCSI Bus Controller

- SYS68K/ISCSI-1 (Force Computers Inc.)

- 68010 CPU for local control.

- 68450 DMA Controller for local transfers.

- SCSI bus interface with the NCR5386S SCSI bus controller.
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- SHUGART compatible floppy interface with the WD1772 FDC.

- All I/O signals awilable on P2 connector.

- VMEbus interface supporting A24:D16, D8.

• Mass Storage Module

- SYS68K/MSM-84 (Force Computers Inc.)

- Only VME P1 backplane is required.

- 64 Pin flat cable is used to connect P2 of the ISCSI-1.

- Floppy Disk Driver (Toshiba ND352)

, Disk Size and Capacity: 3.5", 1.0 Mbyte

, Number of Tracks: 160

, Access Time: 79 ms (averAge)

- Hard Disk (Quantum PRO80S)

, Disk Size and Capacity: 3.5", 84 Mbyte

, Number of Cylinders and Heads: 834, 6

* Seek Time: 19 ms (average)

• OS-9 Operating System

- Professional OS-9 (Microware Systems Corporation)

- Multitasking, real time operating system.

- UNiX-like shell and a hierarchical directory/file structure.

- C Compiler, Assembler/Linker, and User-state Debugger.

- pMACS screen-oriented text editor.

• Chassis with power supply, cooling fans, and motherboard

- SYS68K/TARGBT-32 (Force Computers Inc.)

- 19", 7U chassis.

- 500 W power supply to driveVMEbus and mass storagememory.

- Cooling systems with four fans.

- 20 slotJ1-J2 VMEbus Motherboard.
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s Data Acquisition Module

- Up to 8 Mbyte address space.

- Jumper selectable address modifier code.

- 32 Input Channels with data selectors.

- VMEbus compatible data transfers supporting A24:D32, DS.

- VMEbus Master bus control (Non-slot 1)

• CPU Under Test

- MC68000 Educational Computer Board (Motorola Inc.)

- 4 MHz MC68000 16-bit CPU.

- 32 Kbyte of DRAM and 16 Kbyte firmware ROM/EPROM mon-

itor.

- Two serial ports provided for a terminal and a host.

• Fault Injection Module

- Hardware fault injections on IC pin Unes.

- Single/multiple faults of stuck/bridging types with fault duration

varying from 250 ns to _. &q'_,S •

- Application program generated fault injection.
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1.3 System Customization

This section describes the system customization required to implement

the upset analysis experimental system. This also provides information on

the programming of peripherals.

• SYS68K/CPU-33XN

- OS-9/680001 EPROM Installation

, Remove VMEPROM 2 and installEPROMs for OS-9.

• High -- Socket J6, Low -- Socket J4

- EPROM Type Selection

• 27512 EPROM

, Jumper£eld BI: I to 12, 6 to 7

- InterfacingPI/T2 User I/O Port

• Device: MC68230 Parallel Interface/Timer (PI/T)

. Accessible via the 8-bit local I/O bus. Table 1.1 shows the

register layout of PI/T2.

• User I/O port is available on P2 of VMEbus, shown in Table

1.2.

- The Address Map

• The address map of this CPU board is listed in Table 1.3.

• A24: D32, D24, D16, D8 area: SRAM-6, ISCSI-1

• SYS68K/SRAM-6

- Address Modifier Selection

• Standard Supervisor/Non-privileged Data Access

, Address Modifier Code: 3D, 39

, Jumperfleld B4:4 to 15, 2 to 17

- VMEbus Interface

• A24: D32, D16, D8

, Standard Address Mode (A24)



• Address: $XXO00000-- SXX2000000 (2 Mbyte)

• Ju,nperfleld B3:18 to 15, 20 - 30 to 13 - 3

• SYS68K/ISCSI-1

- Address Modifier Selection

• Standard Non-priviledged/Supervisory program and data Ac-

cess.

• Address Modifier Code: 3A, 39, 3E, 3D

• Jumperfield B22:5 to 2, 6 to 1

- VMEbus Interface

• A24: D16, D8

• Address: SXXA00000 w SXXA1FFFF (128 Kbyte)

• Jumperfield B2h 2 to 17, 4 - 7 to 15 - 12

Table 1.1 PI/T2 Register Layout

ADDRESS REGISTER DESCRIPTION

FF8OOEO0

FFSOOEO1

FFSOOE02

FF8OOE06

FFSOOE08

FFSOOEOA

FFSOOEOD

PIT2 PGCR

PIT2 PSRR

PIT2 PADDR

PIT2 PACR

PIT2 PADR

PIT2 PAAR

PIT2 PSR

Port General Control Register

Port Service Request Register

Port A Data Direction Register

Port A Control Register

Port A Data Register

Port A Alternate Register

Port Status Register
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Table 1.2 PI/T2 User I/O Interface Signals

PIN No.

4

5

6

7

8

9

10

11

13

14

15

16

PORT No.

PA0

PAl

PA2

PA3

PA4

PA5

PA6

PA7

H1

H2

H3

H4

IN/0UT
OUT

OUT

OUT

OUT

IN

IN

P2/J2 No.

A29

C29

A30

C30

A31

C31

A32

C32

A27

C27

A28

C28

SIGNAL

READY*

LW/B*
SLCT0*

SLCTI*

ENB0*

ENBI*

Table 1.3 The Address Map

START (HEX)

-- 00000000

00400000

FAO00000

FBO00000

FBFFO000

FCO00000

FCFFO000

FDO00000

END (HEX)

OO3FFFFF

F9FFFFFF

FAFFFFFF

FBFEFFFF

FBFFFFFF

FCFEFFFF

FCFFFFFF

FFFFFFFF

SPACE

I.OMB

3.9 GB

16.0 MB

15.9 MB

64.0 KB

15.9 MB

64.0 KB

DESCRIPTION

Shared Memory

A32: D32, D24, D16, D8

Message Broadcast Area

A24: D32, D24, D16, D8

A16: D32, D24, DI6, D8

A24: D16, D8

A16: D16, D8

System Area

IOS-9 and 0S-9/68000 are trademarks of Microware Systems Corporation.
2VMEPROM is a PDOS based real time monitor.



2. Data Acquisition Module

When the fault is injected from the fault injection module, the data ac-

quisition module is activated and activity data on 8 or 32 observation poiv:s

are synchronously sampled with the clock of the target system and writ ton

into the SRAM memory module.
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_.1 Hardware Overview

Basically, the data acquisition module generates the address signals from

the clock of the target system and transfers the sampled data to the memory

module via the VMgbus.

A block diagram is shown in Fig.2.1. This board consists of the following
functional blocks:

• Clock Control (CKCTRL)

• Address Generator (ADDGEN)

• Address Modifier Selector (AMS)

• Address Bus Buffers (ABUF)

• Data Transfer Control (DTCTRL)

• Input Channel Selectors (INSLCT)

• Data Bus Buffers (DBUF)

• Bus Master Control (BUSMST)

z

J

m



r...) i
o

o

e-.
0

.el



=
w

m

w

i

i

t_4

i

2.2 Clock Control

• Recording Clock Selector

- J1-1, IC1-1

- Selectableby bit 1 and 2 of J1.

• Clock of CPU Under Test: bit I: ON, bit 2: OFF

• 16MHz VME System Clock: bit 1: OFF, bit 2: ON

• Clock Frequency Divider

- J1-2, IC2

- Selectableby bit 3 - 7 of J1 as shown in Table 2.1.

• Qualifier Trigger

- IC1-2, IC3-1, IC10-1

- Trigger: Fault injection signal transferred from FIM.

- The trigger is enabled when ENB1 is high.

• Clear Control

- R1, IC1-3, IC16-1

- Generate Clear Signfl for the Clock Control, Address Generator,

and Data Transfer Control.

- Reset Signals: System Reset, Bus Error, and End Address.

• End Address Selection

- J2-1

- End address: SXXOFFFFF- SXXTFFFFF

- Selectable by bit 1 - 4 of J2-1 as shown in Table 2.2.
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Table 2.1 Frequency Division Settings

Division bit3 bit4 bit 5 bit6 bit 7

1

2

4

8

16

ON OFF OFF OFF OFF

OFF ON OFF OFF OFF

OFF OFF ON OFF OFF

OFF OFF OFF ON OFF

OFF OFF OFF OFF ON

w

Table 2.2 End Address Selection

End Address bit 1 bit2 bit3 bit4

$XXOFFFFF

SXXIFFFFF

SXX3FFFFF

SXXTFFFFF

ON OFF OFF OFF

OFF ON OFF OFF

OFF OFF ON OFF

OFF OFF OFF ON
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2.3 Address Generator

* Address Signal Generator

- IC4, IC5, IC6, IC7, IC8, IC9

- Implement 24-bit synchronous binary counter using a carry-look-
ahead circuit.

- Maximum clock frequency is calculated as follows:

fM._X = 1/(CLKtoRCOtpLH + ENTtsv)

- Address Space

* Up to 8 Mbyte Address Space. Refer to Table 2.3.

* Start address: SXXO00000 (fixed)

* End address: $XXOFFFFF - SXX7FFFFF (selectable)

• Counter Status Output

- IC10-2

- When counters are enabled to count, EN81* is asserted.

Table 2.3 Address Space and End Address

Address Space End Address

I Mbyte

2 Mbyte

4 Mbyte

8 Mbyte

SXXOFFFFF

SXXIFFFFF

SXX3FFFFF

SXXTFFFFF
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2.4 Address Bus Buffers and Address Modifier Selector

• Address Bus Buffers

- IC12, IC13, IC14

- Three transparent D-latches (74AS573) interface local address fig-
nals with the VMEbus address bus.

- DHBA* places the 24-bit outputs in either a normal logic state or

a high-impedance state.

• Address Modifier Selector

- J2-2, RN, ICll

- 6-bit Codes: Used for an additional decoding parallel to the ad-

dress signals.

- Address Mode: Supports the standard address mode (A24) for

supervisor or nonpriviledged memory access.

* 3E: Standard Supervisor Program Access

* 3D: Standard Supervisor Data Access

* 3A: Standard Non-Priviledged Program Access

, 39: Standard Non-Priviledged Data Access

- Selectable by bit 5 - 10 of J2 as shown in Table 2.4.

Table 2.4 Address Modifier Codes and Settings

HEX Binary bit 5 bit6 bit 7 bit 8 bit9 bit 10

3E

3D

3A

39

111110

111101

111010

111001

OFF OFF OFF OFF OFF ON

OFF OFF OFF OFF ON OFF

OFF OFF OFF ON OFF ON

OFF OFF OFF ON ON OFF



2.5 Data Transfer Control

* Data Transfer Bus Control

- ENB1, DWB*

* IC10-3, IC15-1

* When READY* asserted,both ENB1 and DWB* are latched

to be active.

. LCLR* resetsthe outputs.

- LAS*

, R2, IC10-4, IC15-2, IC17-1, -2

, When READY* asserted,LAS* isset to be active.

* During data transfers,LAS* is assertedby LCLK and resetby

LDTACK*.

- LA01, LDS0-1*, LLWORD*

* IC16-2, -3,-4,IC18-I, -2,IC30-I, -2,-3,IC33-1

* When LW/B* ishigh (longword mode), LDS0*, LDSI*, LA01,

and LLWORD* are set to low during data transfers.

* When LW/B* islow (byte mode), LLWORD* is set to high

and other signalsrespond as follows:

LDS0* = QA00, LD51* =-QA00, LA01 ---QA01

* Data Bus Buffer Control

- IC17-3,-4, IC18-4,-5

- Long Word Mode (LW/B* ishigh)

* During D HBD* is active, ENBL* is asserted and ENBB* is
de-asserted.

- Byte Mode (LW/B* islow)

* During DHBD* is active, ENBB* is asserted and ENBL* is
de-asserted.



• Bus Release Control

- IC31-1

- Support Release On Request (ROR) operation.

• Bus request signals (BR0-3*) will assert BREL to release
BBSY* at the end of the current data transfer.

L.

r

m q

m

r

m



2.6 Input Channel Selector and Data Bus Buffers

• Input Channel Selector

- IC10-5, -6, IC19, IC20, IC21, IC22

- hnplement 32-to-8 data selectors using four 4-bit data selectors.

- Data selection is controlled by the two select inputs (SCLT0-1*)
as shown in Table 2.5.

• Data Bus Buffers

- Long Word Mode

* IC23, IC24, IC25, IC26

. Four transparent D-latches (74AS573) interface 32-bit input

data with the 32-blt VME data bus (D00-31).

* When I.AS* is taken low, the outputs are latched to retain

the data that was set up. Refer to Table 2.6.

. ENBL* places the 32-bit outputs in either a normal logic state

or a high-lmpedance state.

- Byte Mode

* IC27, IC32

. Two transparent D-latches (74AS573) interface 8-bit local

data bus (LD0-7) with the 16-bit VME data bus (D00-15).

* When LAS* is taken low, the outputs are latched to retain

the data that was set up. Refer to Table 2.6.

* ENBB* places the 16-bit outputs in either a normal logic state

or a high-impedance state.
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Table 2.5 Input Channel Selection
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SLCT0* SLCTI* LD7 LD6 LD5 LD4 LD3 LD2 LD1 LD0

high

high
low

low

high
low

high
low

28 24 20 16 12 08 04 00

29 25 21 17 13 09 05 01

30 26 22 18 14 10 06 02

31 27 23 19 i5 11 07 03

Table 2.6 (a) Active Portions of Data Bus

DSI* DS0* A01

low low low low

high low high high

low high high high

high low low high

low high low high

LWORD* D24-31 D16-23 D08-15 D00-07

byte 0 byte 1 byte 2

byte 2

byte 0

byte 3

byte 3

byte 1

m
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Table 2.6 (b) Data Organization in Memory

Operand Byte Address

byte 0

byte 1

byte 2

byte 3

$XXX .... XXO0

SXXX .... XXO1

SXXX .... XX10

$XXX .... XXII
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2.7 VMEbus Master Control

• Master Bus Controller

- IC28, IC29

- VME 12201 provides two device chip set for non-slot I master bus

controller.

- Initiatinga Bus Request

• Drive BR0* low after receiving DWB* and LAS* asserted.

- Arbitration

• After receiving BG01N* from daisy chained VMEbus grants,

locM arbiter arbitrates between DWB* and BG01N.

. If DWB* wins the arbitration (i.e. DWB* occurs before

BG01N*), BBSY* will be asserted.

• If BG01N* wins, local arbiter will drive BGOOUT*, which

passes the bus grant down the daisy chain to adjacent

master in the system.

- Data Transfer

• Local master does not access the bus until the previous mas-

ter has relinquished control of bus, which occurs when AS*,

DTACK* and BERR* are de-asserted.

• Support Address Pipelining using DHBA* and DHBD*.

• Broadcast the address of the next bus cycle while the data

transfer of the current cycle is occuring, i.e. DTACK* and

DSn* are still low.

. DHBA* is enabled as soon as AS* is disabled.

When DTACK* goes high, signifying the end of the current

data cycle, DHBD* enables the data buffers for the next

data cycle.

• WRITE* is latched during address pipelining to hold its level.

- Bus Release

• Supports Release On Request (ROR) protocol via BREL.

. Release the data transfer bus whenever another module

requires it.



External bus request will assert BREL to release BBSY*

at the end of the current data transfer. Refer to section

2.5.

• If no bus requests are pending, the BREI. will be kept

de-_serted and the local master maintains BBSY* low to

perform continuous VMEbus data transfer cycles.

tPLX Technology, 625 Clyde Ave., Mountain View, CA 94043
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3. Interface Signals

3.1 VMEbus Interface

This section provides information on VMEbus interface. Table 3.1 and

Table 3.2 list P1/J1 and P2/J2 pin assignments respectively. The P1 connec-

tor includes all the signals required for the 68000. The P2 connector provides

expansion of both address and data buses to 32 bits and also provides 96 pins

for user I/O lines.

The data transfer bus is very similar to the 68000's native buses except

the following signals. Long word (LWORD*) is asserted for 32-bit data trans-

fers. The 6-bit address modifier (AM0 - AM5) allows the type of access to

be specified. The bus error signal (BERR*) is typically used to indicate a

memory error.

The interrupt bus has seven interrupt request lines (IRQi*), an interrupt

acknowledge (lACK*), and a daisy-chained priority signal (IACKIN*, lACK-

OUT*). Each of seven lines corresponds to an interrupt priority level.

The arbitration bus provides four levels of arbitration. For each level,

there is a bus request signal (BRi*) and a bus grant daisy chain (BGilfl*,

BGiOUT*). Th.e utility bus consists of SYSCLK, SYSRESET*, SYSFAIL*,
ACFAIL*, and power supplies.
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Table 3.1 VMEbus P1/J1 Pin Assignments

PIN No. P1/J1 ROW A P1/J1 ROW B P1/J1 ROW C

D00 ......1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

D01

D02

D03

D04

D05

D06

D07

BBSY*

BCLR*

ACFAIL*

BGOIN*

BGOOUT*

BGIIN*

BG1OUT*

BG2IN*

D08

D09

D10

Dll

D12

D13

D14

D15

GND

SYSCLK

• GND

DSI*

DS0*

WRITE*

GND

DTACK*

GND

AS*

GND

IACK*

IACKIN*

IACKOUT*

AM4

A07

A06

A05

A04

A03

A02

A01

-12VDC

+5VDC

BG2OUT*

BG3IN*

BG3OUT*

BR0*

BRI*

BR2*

BR3*

AM0

AM1

AM2

AM3

GND

SERCLK

SERDAT*

GND

IRQ7*

IRQ6*

IRQ5*

IRQ4*

IRQ3*

IRQ2*

IRQI*

+5VSTDBY

+5VDC

GND

SYSFAIL*

BERR*

SYSRESET*

LWORD*

AM5

A23

A22

A21"

A20

AI9

AI8

AI7

AI6

AI5

AI4

A13

A12

All

A10

A09

A08

+12VDC

+5VDC
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PIN No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Table 3.2 VMEbus P2/J2 Pin Assignments

P2/J2 ROW A

READY*

SLCT0*

ENB0*

P2/J2 ROW B

+5VDC

GND

RESERVED

A24

A25

A26

A27

A28

A29

A30

A31

GND

+5VDC

D16

D17

D18

D19

D20

D21

D22

D23

GND

D24

D25

D26

D27

D28

D29

D30

D31

GND

+SVDC

P2/J2 ROW C

LW/B*

SLCTI*

ENBI*
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3.2 Input Channels

The input channels consit of data channels (DATA00-31), clock (CLK),

and trigger signal (TRIG*). Table 3.3 shows the pin assignments of the input

channels.

Table 3.3 Input Channel Pin Assignments

PIN DAM Signal ECB Signal

(a)
(c)

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

DATA04

DATA05

DATA06

DATA07

DATA08

DATA09

DATA10

D AT A 11

DATA12

DATA13

DATA00

DATA31

DATA30

DATA28

DATA27

DATA26

DATA25

DATA24

DATA22

DATA23

DATA21

PIN DAM Signal

(b) GND

(d) GND

D04 2 DATA03

D05 4 DATA02

D06 6 CLK

D07 8 DATA 14

D08 10 DATA 15

D09 12 TRIG*

D10 14 DATA01

Dll 16

D12 18

D13 20

D00 22

A15 24 DATA16

A 14 26 DATA29

A12 28

Ali 30

A10 32

A09 34 DATA17

A08 36 DATA18

A06 38 DATA19

A07 40 DATA20

A05 42

8M-CLK 44

1M-CLK 46

ECB Signal

GND

GND

D03

D02

4M-CLK

D14

D15

FIEN .1

D01

E

AS*-

UDS*

LDS*

R/W*
A13

FC2

FCI

FC0

A01

A02

'A03
A04

DTACK*

6800IRQ*

VMA*

1FIEN*: Fault Injection Enable, a signal transferred from the fault injection module.



Appendix A Schematic Diagrams
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A.1 Clock Control

A.2 Address Generator

A.8 Address Bus Buffers and Address Modifier Selector

A.4 Data Transfer Control

A.5 Input Channel Selector and Data Bus Buffers

A.6 VMEbus Master Control
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LCLR*

R2

IC17-1

I

LDTACK*

LCLK

ENB0 I::=

QA01 [:>

QAO0

LW/B*

IC33-1

DHBD*

BR0*

BRI*

BR2*

BR3*

{::>

1018-s

[:::>

l:::>

I:::>

I:::>

I:::>

I:::>

I:::>

D>

ENB1

DWB*

LAS*

LA01

LDSO*

LDSI*

ENBL*

ENBB*

LLWORD*

BREL
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IC28

BREL E>

SYSRESET*_

BG,N*(__:IC18.6
LAS* _

I
DWB* I:::> ,,

LDS0-1*

DTACK*

BERR* C_

BGIN

AS*

VME1220A

G

BBSY*

DHBA*

DWB*

LAS*

R/W*
VME1220B

IC29

BR*

B(;OUT*

BBSY*

i::> DHBA*

"--'xJ

CZ_
AS*

I:::> LDTACK*

I:::> LBERR*

WRITE*

[:::> DHBD*

C_ DSO-I*
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Appendix B Parts List

Table B.1 DAM Parts List (1)

m

u

U

LABEL Part Number Pins DESCRIPTION

ICI

IC2

IC3

IC4

IC5

IC6

IC7

IC8

IC9

IClO

IC11

IC12

IC13

IC14

IC15

IC16

IC17

IC18

IC19

74LS132 14

74LSI61A 16

74AS74 14

74LS161A 16

74LSI61A 16

74LSI61A 16

74LSI61A 16

74LSI61A 16

74LSI61A 16

Quadruple Schmitt NAND gates

Synchronous 4-bit counter

Dual D-type F/Fs

Synchronous 4-blt counter

74LS04 14

74AS573 20

74AS573 20

74AS573 20

74AS573 20

74AS74 14

74AS02 14

74AS00 14

74AS04 14

74LS153 16

Hex inverters

Octal D-type transparent latches

Dual D-type F/Fs

Quadruple 2-input NOR gates

Quadruple 2-input NAND gates

Hex inverters

Dual 4-to-I data selectors
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Table B.2 DAM Parts List (2)

LABEL Part Number Pins DESCRIPTION

Dual 4-to-1 data selectorsIC20

IC21

IC22

IC23

IC24

IC25

IC26

IC27

IC28

IC29

IC30

IC31

IC32

IC33

74LS153

74LS153

74LS153

74AS573

74AS573

74AS573

74AS573

74AS573

VME1220A

VMEI220B

16

16

16

20

20

20

20

20

24

24

Octal D-type transparent latches

VMEbus master controller

(Non-slot 1, P-45)

74AS02

74LS20

74AS573

74AS00

14 Quadruple 2-input NOR gates

14 Dual 4-input NAND gates

20 Octal D-type transparent latches

14 Quadruple 2-input NAND gates

m

_w



u

m

Appendix C DAM Board Layout

C.1 Component Side Layout

C.2 Wiring Side Layout
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Appendix D Copies of Data Sheets

D.1 VME 1220 Non-Slot 1 VMEbus Mast, er Controller
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--June 1990

VME 1210/1220

Slot I and Non-Slot 1 VMEbus Master Controllers

_-Dlstlnctlve Feature_

• VME 1210 provides two device Chip set for slot 1
master bus controller and single level arbiter

_-_, VME 1220 provides two device chip set for non-slot 1
master bus controller

• Integrates 48ma and 64ma VMEbus slg-
... nals:AS*,DS0*,DSI*,WRITE*,BR*,BBSY •

• Integrates Input hysteresis buffers

, Supports Release When Done (RWD) and Release On
Request (ROR) protocols

• Supports address plpelinlng, block transfers, and
_ early BBSY ° release

-=_- Available In Commercial, Industrial and Military tem-
perature ranges

LProgrammable Version Available

ll the VME 1210/1220 does not match the requirements

of the design, a programmable version is available (the
PLX 464) which allows the user to customize all inputs,
outputs and logic. Programming is performed using
industry standard tools such as ABEL=' and CUPL ='
software and commonly available PLD programming
hardware. Contact PLX for a data sheet on the PLX 464
and other PLX products.

h

W

l

1

--,=

m

Vcc

BREL I
LA$= )

SYSRESETB

Applications

VMEbus masters residing in slot 1 boards (VME 1210)
VMEbus masters residing in non-slot 1boards (VME 1220)

General Description

The VME 1210: The VME 1210 is comprised of the VME
1210A and the VME 1210B for slot 1 applications. The
devices are CMOS an0 Dacka0ed in 24 pin 300 milwide DIPs
or 28 pin J-type LCCs VME 1210A provides bus
requesting, local arbitration, and single level system arbi-
tration. The VME 1210B functions as the VM Ebus controller.
The requester initiates a VMEbus request from the local
master's bus request for a clata or interrupt cycle. The bus
controller controls the bus after initiation of a bus cycle and
relinquishes the bus at the end of the bus cycle. The bus
controller supervises the handshaking between the local
master CPU and the slave modules.

The VME 1220: The VME 1220 is comprised of the VME
1220A and the VME 1220B for non-slot 1 applications. The
devices are CMOS and packaged in 24 pin 300 milwide DIPs
or 28 pin J-type LCCs. e VME 1220A provides bus
requesting and local arbitration. The VME 1220B functions
as the VMEbus controller. The requester initiates a VMEbus
request from the local master's bus request for a data or
interrupt cycle. The bus controller controls the bus after
initiation of a bus cycle and relinquishes the bus at the end
of the bus cycle. The bus controller supervises the hand-
shaking between the local master CPU and the slave
modules.

_V¢¢ Vcc _ _ VCV_i.(_D

=. VME 1810 ; .
HSYm LD:_0m I= I ll LDT_KI=;.JT. Slo't: I L0S_.... • - •

Dr), ,_ ,-=:=, =

AS. _HllA= P10 S _ e r" IERR. ViZIT[=
IIGINd :P m Vss I_HllAm I= Y 18 VSI

NC I I1' IG L&SI 8 17 Coa_ect to l_n 1]

NC • 16 NC R/V= • I*, LIIERRm
NC IS I=, NC Bg'C'Ylg II II_ _|!

BGIN . 14 Co_.lect to l_n ]3 CoN'_ect to p_ 17 t'-- n _ Correct to Vss
Vss Connect to I_ ]4 Vss D$0=

VME 1210A VME 12lOB

Vc¢ I= h "_J t,l_l v¢¢
BRCL r'- I e

SYSRESCT.
9VD= r"

AS- r-,, ==....._

I:onnect to I_n ]71=:"
COnnect to pm 16r-_.

_=I- =
IGIN r" I n
VSS I"Iw _:

=.. VME 1 20 v.DVB= _ = e=¢:::_ ASu

= .s- Non-s[o± 1 L_S0-'-, "== L=T*C_,
= )GOUT= LD$|m I" ' _ DHBD=

__Vss DTACKm s m_'" _s±er ,CRY.---=, '=" ,,_ v..VRITEm
vss _.IB&. I:= _' ==_¢=1 Vss

_ CONneCt to pm 7 LAS= m 17,:=IConnect "¢o p_,, 1!
:2 Connect to p_ 8 R/V= Pr- _ sl=l L|ERR=

"='"==. ==.,.
t to i>_ ',3 Co_,ect to pin 17 n _¢_1 CoN',,ec't "to vss

•"z CoNnect io _ 14 Vss I_ e ol_l DSO.

..°_--- VME 1220A

_)_BELis a IrademarkofDataI/OCorp.
CUPLis aVademarkof LogicalDevices,Inc.

VME 1220B

Figure 1. Pinout of VME 1210/1220 (DIPs)

PLX Techndogy, Inc. 1,069
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VME 1210/1220

;n Description

VME 1220A

Pin # Pin #
LCC DIP

II = I

3 2

4 3

5 4

6 5

7 6

9 7

10 8

11 9

12 i0

13 11

Signal
BREL

LAS °

SYSRESET"

DWB"

AS*

NC

NC

BGIN

14,21,
24

16

17

_ 18

20

23

25

26

27

i 2.28

1,8,
_ 15,22

12,18, VSS
20

13

14

15

16

17

19

21

22

23

1,24

NC

o

DHBA"

BGOUT"

BBSY*

BR"

Vcc

NC

T_,pe
I

I

I

I

I

I

I

I

I

I

0

I

0

0

0

0

0

I/0

0

Active high;
released.

Function

Bus release signal indicating BBSY" can be

Active low; Address strobe from local master.

Active low; VMEbus System Reset.

Active low; Device wants bus, local master requests con-
trol of bus.

!Active low; VMEbus Address Strobe'i'

IConnect to pin 17 (DIP) or pin 20 (LCC).
i i

Connect to pin 16 (DIP) or pin 19 (LCC).

No Connect.

No Connect.

Active high; Inverted VMEbus Bus Grant In signal,
BGIN o.

Chip Ground.

Connect to Pin 14 (DIP) or Pin 17 (LCC).

Connect to Pin 13 (DIP) or Pin 16 (LCC).

No Connect.

Connect to pin 8 (DIP) or pin 10 (LCC).

Connect to pin 7 (DIP) or pin 9 (LCC).

Active low; Device has bus address, address buffer
enable.

Active low; VMEbus Bus Grant Out signal.

Active low, 48 mA open collector; VMEbus Bus Busy
signal.

i ii ,, i

Active low, 48 mA open collector; VMEbus Bus Request
signal.

+5 V Chip Power

No Connect.

_4
_iTv*N_ PAGE BLANK NOT FILMED



VME1210/1220

• Pin Description
VME 1210B and VME1220B

Pin #
LCC

3

4

5

6

7

9

10

11

12

13

14,21,
24

16

17

18

19

20

23

25

26

Pin #
DIP

3

4

5

S!_Inal
DWB"

LOS0*

LDSI*
i i

DTACK*

6 BERR"
,i

7 DHBA°

8 LAS"

9 R/W*

10 BBSY°

11

12,18,
20

,, ,....i,

Vss

13 DS0*

14

15 DSI*

16 LBERR °

17

19 WRITE*

21 DHBD"

0

I

O

O

O

O

O

O

Function
III I

Active low; Device wants bus, local master wants control
of VMEbus.

Active low; Lower data strobe from local master.

Active low; Upper data strobe from local master.

Active low; VMEbus Data Transfer Acknowledge, data is
valid during a read cycle or data has been accepted from
the bus during a write cycle.

Active low; VMEbus Errorsignal.

Active low; Device has bus address, address buffer
enable.

Active low; Address strobe from local mas_er.

Active higMow; Read or write cycle from local master.

Active low; VMEbus Busy, local master controls bus.

Connect to pin 17 (DIP) or pin ;_0(LCC).

Chip Ground.

.|r

Active low; 64ma VMEbus lower Data Strobe signal, indi-
cates valid data on bus.

Connect to Vss.

Active low; 64ma VMEbus upper Data Siro'be signal,
indicates valid data on bus.

Active low; Open collector signal, bus error to local mas-
ter.

Connect to pin 11 (DIP) or pin 13 (LCC).

Active low; 48ma VMEbus Write signal, indicates bus
read or write cycle.

Active low; Device has bus data, data buffer enable.

22 LDTACK* Active low; Open collector signal, data acknowledge to
local master.

27 23 AS* O Active low; 64mA VMEbus Address Strobe signal, indi-
cates valid address on bus.

2,28 1,24 Vcc +5 V Chip Power

NC No Connect.
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VME 1210/1220

= . VME 121011220 Timing Waveforms
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w

w

BBSY_

BGIN

BREL

DHBA_

DHBD_

LAS_

AS_

LDSn_

DSn_

1:4

t6

't17

DTACK_

\
I

BGOUT_

DX_B_ No DWB_

Figure 5. Timing Diagram
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ME'1210/1220

]mln= Speclhcatlon_

Timing

°Parameters

"- tl

Signals

DwE" to BR"asserted

C-45
II

9C

0

45

Max. -, ime(ns) unless
otherwise specified

M-6_

to 13o

o

65

Description

If DWe" is assertedatte, 1.AS"

LIC" to BR"asserted

BR" to BGasserted

12

| t3
L'

-- t4 BGINto BBSY"asserted

t5 BBSY"to BR° negated

IS BBSY"to DHBA*asserted

BBSY"to BGINnegated

If LAS' is assertedaher DWB"

VME 12: 0 onlywhen internalBR" generat',c_
(5,G connectedto BGIN)

VM- 12tC onlywhen extema_BR"received
(BG connectedto BGIN)

t7

System arbitertime Systemarbil¢ Time VME 1220 only

125 185 VME 1210 only, in_udes delay line:55nsIor
M-65, 45ns for M-5r. 35ns for C-4S, 40nslot

135

45

45

i : t8 DHBA" to DHBD* asserted

19 DHBA" to WRITE" asserted

tt0 DHBA" to AS"asserted

tll

t12

-r

t13
m

t14
t15

.. tle
t17

: _ t18

I;9

_ t22
im

t23

._ t24
w ,

_5

_6
I"
Note:

AS* to DSn" asserted

BGIN to BBSY" negated

BRELto BBSY" negated

DTACK" to LDTACK"asserted

LDTACiCto LAS'/LDSn"negated

LAS"to DHBA* negated

DWB"to DHBA"negated

LAS"to AS. negated

LDSn"toDSn" negated

195

65

65

65

..r5min

45 max

35 min

Systemarbitertime

45

Systemarbiter time

C-35, 60ns forC-25 par1

VME 122_ only

VME 1210 only

VME 1220 only

65

45 65 Conditionalupon R/W" value

1309O
70 (rain.)

45

80 max

70 rain

135 max

105 rain

45

65

120max

10mill

195 max

165 rain

65

65

@ Localmaster

45

@ LocaJmaster

45 65

45 65

SO 72

50 72

LDSn"to DSn" negated 50 72

Dan" to WRITE" negated 45 65

45 65DSn'/DTAC)C to LDTACK"
negated

BGIN to BGOUT" asserted 130

55+d,65+d

65

195

65

9O

25+d,35+d,45+d

45

135

45

Ensures35ns minimumaddress to AS"and
data to DSn" set up times

VME 1210 only;

VME 1210 only;t7min + tl 2rain> 90 ns rain.
BgSY" assertion"

VME 1220 only

VME 1220 only. (see note below)

Validonlywhen BREL is asserted after
BGIN is nega_:l

Localmasters time to negate strobes

If DWB"alreadynegated

If I.AS"alreadynegated

Ensures lOnshold time

Eadiestnegationof DSn" or DTACK" causes
LDTACIC to be negated

VME 1220 only

VME 1210 only

Asse_on time when alreadyhave bus
(BBSY"asserted_

Assertiontime when alreadyhave bus
(BBSY"asserted)

BGIN to e3OUT" negated

Latest of LAS./DWB"to AS"
asserted

Latest of DHBD'A.DS"to DS"
asserted

BBSY"is guaranteed to be asserledfora minimum of 90 ns in theVUE 1210Adevicesar¢l the C:-4Sdeviceof.the VME2 220A, even ifB_GIN,_snegated
immediately after BBSY*is asserted. Forthe C-35 and C-25 VME 1223A devices,the sum ot the systemarbiter uu._Y- asserted to BGIN negalec-

-,- time and the tl 2 minimumtime on the VME 1220A must be greater_a-t 90 ns. Generally.this time wil! betakenup coml_ -:ely by _ systemart_.ter
time, however, if not,a Oetayline can be connectedbetween pins8 and 16 (DIP) or pins10 and 19 (LCC) on ._e VM.E.1,2/?..:,..dev..P_.to guarar=.t.ea..me
90 na minumum. Forexample,if_ systemartxter"BBSY"assertec to BGIN negated"time was 35ns {mm_, no oe|ay,ne woumDe neeoeowor_ne

- C-35VME 122OAdevice,sinoe 35 + 75 > 90. However,a 10ns dalay line wouldbe requiredforthe C-25 VME 1220A.
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FAULT INJECTION MODULE

SCHEMATIC DIAGRAMS

Ver. 1.0
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Fault Injection Module

Parts List (1)

Ref No.

ICl

IC2

It3

It4-1

IC5

IC6

Part Number Size

SN74ALS520 20

SN74ALS520 20

SN74ALS138 16

SN74ALS32 14

VNE 2000 241

SN74F374 20

IC7

It8

It9-1

IClO-I

ICll

SN74LS645-1 20

NC68230 P8 48

SN74ALSO4B 14

SN74LS244 20

SN74ALS161B 16

R1

ICl2

ICl3

ICl4-1

IC14-2

IC14-3

IC14-4

IC14-5

ICl5-1

IC16-I

IC17

IC18-1

R2

DLI

SN74ALS520

SN74ALS520

SN74ALSO4B

SN74ALSO4B

SN74ALSO4B

SN74ALSO4B

SN74ALSO4B

SN74ALS02

SN74ALS01

SN74ALSI53

SN74ALS74A

RWT050P

82

20

20

14

14

14

14

14

14

14

16

14

8

14

Description

8-bit Identity Comparator

8-bit Identity Comparator
3 to 8 Decoder

Ouad 2-Input OR Gates (1/4)

Slave Nodule Interface Device

Octal D-Type Flip-Flops

Octal Bus Transceivers

Parallel Interface/Timer (PIT-O)

Hex Inverters (1/6)

Octal Buffers (I/2)

4-bit Binary Counter

R Network, seven 4.Tkn (I/7)

8-bit Identity Comparator

8-bit Identity Comparator

Hex Inverters (1/6)

Hex Inverters (2/6)

Hex Inverters (3/6)

Hex Inverters (4/6)

Hex Inverters (5/6)

Quad 2-Input NOR Gates (1/4)

Quad 2-Input NAND Gates (1/4)

Dual I of 4 Data Selectors

Dual D-Type Flip-Flops (1/2)

R Network, seven 4.7kN (2/7)

50ns Delay Line

t300mil 24 pin DIP
_Single-in-line package
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Ref No. Part Number

SN74ALSO4BIC9-2

IC9-3

ICi5-2

IC16-2

ICl9

IC20

IC21

IC22

R3

R4

R5

IC23

IC24

IC25

IC26

IC27

IC28

IC29

IC30

IC3i

IC32

IC33

IC34

IC35

IC36

IC37

IC38

SN74ALSO4B

SN74ALS02

SN74ALSOI

SN74ALSI53

SN74ALS153

SN74ALSI53

SN74ALS153

MC68230 P8

SN74LS449

SN74LS449

SN74LS449

MC68230 P8

SN74LS449

SN74LS449

SN74LS449

MC68230 P8

SN74LS449

SN74LS449

SN74LS449

NC68230 P8

SN74LS449

SN74LS449

SN74LS449

Fault Injection Module

Parts List (2)

Size Description

14

14

14

14

16

16

16

16

8

8

8

Hex Inverters (2/6)

Hex Inverters (3/6)

Quad 2-Input NOR Gates (2/4)

Quad 2-Input NAND Gates (2/4)

Dual I of 4 Data Selectors

Dual i of 4 Data Selectors

Dual I of 4 Data Selectors

Dual I of 4 Data Selectors

R Network, seven 4.Tkn (3/7)

R Network, seven 4.Tkn (4/7)

R Neteork, seven 4.Tkn (5/7)

48 Parallel Interface/Timer (PIT-I)

16 Bus Transceviers w/ Bit dir.

16 Bus Transceviers w/ Bit dir.

16 Bus Transceviers w/ Bit dir.

48 Parallel Interface/Timer (PIT-2)

16 Bus Transceviers w/ Bit dir.

16 Bus Transceviers w/ Bit dir.

16 Bus Transceviers w/ Bit dir.

48

16

16

16

48

16

16

16

Parallel Interface/Timer (PIT-3)

Bus Transceviers w/ Bit dir.

Bus Transceviers w/ Bit dir.

Bus Transceviers w/ Bit dir.

Parallel Interface/Timer (PIT-4)

Bus Transceviers w/ Bit dir.

Bus Transceviers w/ Bit dir.

Bus Transceviers w/ Bit dir.
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PORT (C)

v_

m
m

v

0

GBA,

I TRIG.

CONTROL

TRIG

m i i

PULSE GENERATOR

7- VCC

GAB* GBA*

AI B1

A2 B2

LS-446

A3 B3

A4 B4

DRI DR2 DR3 DR4

OPERATION

ISOLATION

A* TO B

ISOLATION

GAB, DRn

H II X

H L H

H X L

PORT (B)

BIT 1

BIT 2

BIT 3

BIT 4

D

0

FIG. FAULT INJECTION NODULE (4-BIT)
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Additional Components for the New Experimental System

m

m

m

i

Part No. Manufacturer Description Cost ($)
MZ 7500 MIZAR GPIB Interface Board for 695.00

VMEbus

MIZAR Single Cable for MZ 7.500 75.00

MacII488 IOtech GPIB Controller Board for 535.00

Mac II

PFG5105 Tektronix Pulse Generator (demo) 2,471.25

PFG5105 Tektronix Pulse Generator (new) 2,800.75

TM5006 Tektronix Prog. Mainframe (demo) 851.25

FIM JHU 48ch Fault Injector

Mac II Apple Macintosh II

SPARC Sun Micro. SPARCstation work station
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R
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+=.

SPARC

I I

I I

' SCS I '
! I

I I

•-:, I/F l-
m i

t ......... J

SCSI

I/F

(Up to 8MB)

I

I

SRAM

(2MB) ---

VMEb u s SYSTEM

(0S-9/68000)

I HDD

i (80XB)

FDC/

SCSI

FDD

(3.5")

J

POWER

(+5V, !12V)

I
CPU

(MC68030)

I
GP-IB

I/F

ITS-232 GPIB

GP-IB_I/F

Macl I

GPIB

TRG

FIM

PULSE

DAM

I

PULSE JGEN

!_S-232

VMEbus

LOCAL BUS

CUT

(IC68000)

I ITS-232

VTIO0

FAULT INJECTION EXPERIMENTAL CONFIGURATION
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Targeted Features of the Fault Injection Module

• Fault Injector

- Provides 48 channels with bit-definable outputs using four PI/T

(MC68230) and twelve bus transceiver (74LS446) chips.

- Supports three output states (0, 1, and Z 1) on each channel.

- 2ch pulse generator is installed as a source of fault injections.

- Supports single/multiple faults of stuck-at-0/1 types with dura-

tion varying from 40 ns to 99.9 ms.

• Word Recognizer

- Provides a versatile trigger source for the fault injection and data

acquisition.

- Implements 16-bit word recognizer using a MC68230 PI/T and

two 74LS686 magnitude comparators.

t Z: High-impedance


